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Preface

The conference Mathematical Methods in Computer Science (MMICS) was held
in the memory of Thomas Beth during December 17-19 in Karlsruhe. The con-
ference was meant to reflect the many interests of Thomas Beth. Even though
these interests might seem diverse the mathematical methods employed and es-
pecially algebra as a language were the common denominator of all his scientific
achievements. The 12 contributed talks reaching from t-designs to integrated
circuits were selected from 30 submissions from 14 countries.

The contributed talks were complemented by three invited talks. Teo Mora
gave a talk on “Decoding Cyclic Codes: The Cooper Philosophy” embracing the
areas of coding theory and symbolic computation. These areas were especially
appreciated by Thomas Beth, because they combine algebra and algorithmics.
Richard Jozsa lectured about “Embedding Classical into Quantum Computa-
tion” in the area of quantum information. Quantum information was a focus
of research of Tomas Beth since 1993 when he co-organized one of the ear-
liest workshops on quantum cryptography in Dagstuhl. Quantum information
became his passion in 1994 when the connection between the Fourier transfor-
mation and breaking the RSA crypto system became apparent via Shor’s algo-
rithm, which can factor integers in polynomial time on a quantum computer.
The Fourier transform and cryptography were topics that played an important
role in Thomas Beth’s research and this connection, once again, justified his
broad view on computer science.

We were especially delighted by the very personal talk from Fred Piper, a
former colleague of Thomas Beth from the time he spent at Royal Holloway
College. His talk was about “Zeros and Ones” and his abstract summarizes the
scope of the conference better than we can do:

Tom was a personal friend as well as being a colleague and collaborator.
He was interdisciplinary in the truest sense of the word with expertise in
computer science, mathematics and physics. In this short talk I will look
at those areas where our personal interests overlapped. These began with
finite projective planes, generalised on to block designs and then changed
(from pure mathematics) to coding theory and cryptography. The talk will
be historical with little technical detail but, using zeros and ones as the
theme, will try to show that the path we followed was ‘natural’.

Thomas Beth would have enjoyed this conference. His legacy should support us
in our research projects and remind us to never forget the pleasure of intellectual
work.

October 2008 Jacques Calmet
Willi Geiselmann
Jorn Miiller-Quade



In Memoriam

Prof. Dr.-Ing. habil. Dr. rer. nat. Thomas Beth, professor and long-standing
spokesman of the Institut fiir Algorithmen und Kognitive Systeme (TAKS), was
born November 16, 1949 in Hannover. He studied mathematics, physics, and
medicine at the Universitdt Gottingen and received his Dr. rer. nat. in Mathe-
matics from the Universitit Erlangen-Niirnberg in 1978 after four years of em-
ployment as a research associate.

After receiving the degree of Dr. Ing. habil. in the area of informatics in 1984
from the same university he was appointed Professor of Computer Science at
the University of London and head of the Department of Computer Science and
Statistics at the Royal Holloway College, University of London. There he created
the research group for cryptography.

In 1985 he took a Chair of Informatics at the Universitit Karlsruhe (TH)
and, together with two colleagues, co-founded the Institut fiir Algorithmen und
Kognitive Systeme, which he has represented as a spokesman ever since.

The scientific achievements of Prof. Beth were aimed at understanding algo-
rithmic structures in larger systems or applications. This line of research, which
started with his algebraic explanation of the general Fourier transform, was con-
tinued at his institute, becoming the groundwork in modern signal and image
processing. Automated tools for the decomposition of signal transforms were
one result of his research that yielded efficient algorithms for different applica-
tions. New methods for medical image processing were based on these methods
and the algebraic models for signal transforms. Professor Beth recognized very
early the importance of the wavelet transform for data compression and pattern
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classification. This research was guided by the general idea to use mathematical
techniques to develop solutions for a broad spectrum of tasks in signal pro-
cessing and automatically realize these in very highly integrated circuits. This
homogeneous development process avoids inefficiencies and design errors to a
large extent.

Cryptology was another focus in the work of Prof. Beth, where he followed
an analogous approach. As in his other work he kept an eye on the applicabil-
ity of his methods, which is reflected by his work in the European Institute of
System Security (E.I.S.S.) that he founded in 1988 and headed since then. In
his research in cryptology he successfully applied methods from the mathemat-
ical areas of combinatorics and algebra. In 1982 he organized an international
cryptology conference at Castle Feuerstein, from which the renowned series of
EUROCRYPT conferences emerged.

With this background Thomas Beth was early on attracted by the newly
emerging field of quantum computing. This area linking informatics, mathemat-
ics and physics appealed to him, not only as a researcher, but also due to the im-
plications quantum computing has on cryptology. Encryption mechanisms which
are classically considered to be secure become insecure with respect to techniques
from quantum computing.

Thomas Beth became a pioneer of quantum computing on the national level
as well as internationally. His activities led to the first priority program of the
Deutsche Forschungsgemeinschaft and to the first European funding program in
this area. In Germany he headed the first and largest research group on quantum
computing in informatics.

In the Faculty for Informatics in Karlsruhe he was one of the initiators of the
new scientific field of anthropomatics. This young area uses methods and models
from informatics to describe the interaction of humans with their environment
to supply solutions which are well adapted for individual requirements.

Teaching and research were inseparable for Prof. Beth. Passing on his knowl-
edge was of great concern to him and he kept up a scientific dialogue at all levels:
during lectures, at his institute, in the faculty and at national and international
conferences. Many of his pupils are now in high positions in science and industry.

In spite of his severe illness he was actively involved in designing the future of
informatics. Unfortunately, he could pursue this task for a quarter of a century
only. He died on August 17, 2005.
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On the Security of Beth’s Identification Schemes
against Active and Concurrent Adversaries

Giovanni Di Crescenzo

Telcordia Technologies, Piscataway, NJ, USA
giovanni@research.telcordia.com

Abstract. One of the earliest identification schemes was proposed by
Beth in [6]. Since its introduction, variations and generalizations of this
scheme have been considered, and, recently, the property of security
against passive impersonation was shown, under a weak unforgeability
assumption on the hashed El Gamal signature scheme, for two such vari-
ants: one in the standard (i.e., not identity-based) and one in the identity-
based model. However, the security of both protocols under active and
concurrent impersonation attacks was left open.

In this paper we prove that very minor modifications to these schemes
result in schemes that satisfy security under active and concurrent imper-
sonation attacks, assuming a one-more-dlog assumption. The resulting
protocols are just as efficient as the original variants, which are, in turn,
somewhat more efficient (but less general) of the original one proposed
by Beth.

1 Introduction

An identification scheme is a method for a party A to convince another party B
of A’s identity. While identification schemes are routinely used in real-life using
physical proofs of identity (e.g., identity cards, driving licenses, etc.), computer
technology has raised the problem of remote identification schemes; i.e., iden-
tification schemes where A and B are physically distant. As of today, several
problems related to identification schemes have been studied, several security
notions and schemes have been proposed, and the study of (remote) identifi-
cation schemes is an important research area in Cryptography. Here, the most
common scenario, which we also study in this paper, is that of A publishing a
‘public key’ and keeping secret a matching ‘secret key’, and using the secret key
to identify to B.

Security Notions. Important problems in this area include formulating appro-
priate security notions for an identification scheme. A first natural notion that
can be proposed is that an identification scheme is secure if no efficient adversary
can impersonate A, even after witnessing many identification sessions between
A and B (this notion is usually called ‘security against an impersonation attack
of passive type’, since the adversary is passively eavesdropping sessions between
A and B). Note that the adversary is not given the secret key. A second and

J. Calmet, W. Geiselmann, J. Miiller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 G. Di Crescenzo

stronger notion is that an identification scheme is secure if no efficient adver-
sary can impersonate A, even after taking part in many sequential identification
sessions with A, playing as B (this notion is usually called ‘security against an
impersonation attack of active type’, since the adversary is actively involved in
the sessions between A and B before attempting the impersonation attempt).
An even stronger notion is ‘security against an impersonation attack of concur-
rent type’, which extends the previous notion in that the identification sessions
played by the adversary with A before attempting its impersonation attempt
can be run concurrently with multiple entities that use A’s secret key.

Previous work. The first identification schemes have been given in [T2JT3)15]
and were based on the hardness of the number-theoretic problem of quadratic
residuosity modulo a composite integer. Another important contribution of [13]
is the general paradigm of using zero-knowledge [15] proofs of knowledge in order
to prove the knowledge of an identity without revealing its associated secret key.
Since then, several improvements and variants of the mentioned schemes have
been proposed, mostly motivated by efficiency considerations (we mention, in
particular, [GIT7/20/T8], but see also references in [I]). Many of the mentioned
schemes are efficient in all metrics of interest (i.e., time and communication
complexity).

While some of the early identification schemes (e.g., [I2[T3JI8]) were given a
proof of security against active impersonation attacks (and can be showed to
be secure against concurrent impersonation attacks), this was not immediately
the case for other schemes. For instance, the popular schemes in [I7/20] were
only proved to be secure against active and concurrent attacks much later in [4].
Moreover, the status of other schemes, including Beth’s scheme in [6], with re-
spect to these security notions is currently unknown. Given the special efficiency
of these schemes, it remains of great interest to prove, disprove their security
against advanced security notions.

Our contribution. We consider the identification scheme from [6], which is one
of the earliest identification scheme and is based on one of the most popular sig-
nature schemes (i.e., El Gamal signatures [B]). This scheme has already received
some attention in the literature, as it was revised and generalized in [7J§], and
further studied in [I].

The scheme in [6] had been proposed in the identity-based model, a more
complex model than the standard model discussed above, where the user’s se-
cret key is somehow tied to the user’s identity by a trusted authority. In [I] it was
observed that many identification schemes proposed in the identity-based model
had a corresponding scheme in the standard model, and viceversa, and a scheme
in one model could be mapped to a scheme in the other model via a particular
transformation, if some specific ‘convertibility’ condition was satisfied. The au-
thors in [I] used this approach to surface several identification schemes in one
model that were related to the known scheme in the other model, proved several
security results on the surfaced schemes, and left some related open problems.
In particular, they proposed an identification scheme in the standard model,
which we call Beth-SI-0, that is uniquely related to (a slightly more efficient and
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less general variant of) the identification scheme in the identity-based model
from [6]. They also proved scheme Beth-SI-0 to be secure against passive im-
personation, assuming the universal unforgeability under no-message attack of
the hashed-message El Gamal signature scheme [5]. Using their transformation
based on the convertibility property, they also proposed an identification scheme
in the identity-based model, which we call Beth-IBI-0, preserving the same type
of security. Finally, they left open the security of both schemes Beth-SI-0 and
Beth-IBI-0 against active and concurrent impersonation attacks.

In this paper we define a very minor, seemingly irrelevant, variation of scheme
Beth-SI-0, which we call Beth-SI-1, and prove it secure in the standard model
against active and concurrent impersonation attacks, under a one-more-dlog as-
sumption (see also [412] for related assumptions). Here, we note that scheme
Beth-SI-1 maintains the same efficiency as scheme Beth-SI-0. We then observe
that scheme Beth-SI-1 also satisfies the mentioned convertibility condition and
thus obtain a scheme Beth-IBI-1 for which we can prove security against active
and concurrent impersonation attacks, under the same intractability assump-
tion, in the identity-based model. Our minor modification preserves the same
time and communication efficiency of the starting schemes, which are, in turn,
more efficient but less general variants of Beth’s original scheme [6].

Organization of the paper. We start with basic modeling and formal def-
initions in Section 2 We review the El-Gamal signature scheme [5], and the
identification scheme Beth-SI-0 in Section Bl We then describe scheme Beth-SI-1
and prove its security in Section [l Finally, we discuss the extension to scheme
Beth-IBI-1 in Section

2 Definitions

In this section we give the scenario for identification schemes, defining the entities
involved, the assumed connectivity among them, the phases, the (sub)protocols,
and their security requirements. We start with some basic notations.

Basic notations. The expression y < .S denotes the probabilistic process of ran-
domly and independently choosing y from set S. The expression y <« A(x1,xa,. . .)
denotes the (possibly probabilistic) process of running algorithm A on input
Z1,Ta,... and any necessary random coins, and obtaining y as output. The
expression z «— (A(x1,x2,...) < B(y1,y2,...)) denotes the (possibly proba-
bilistic) process of running an interactive protocol [I5] between algorithm A,
taking as input x1,xs,... and any necessary random coins, and algorithm B,
taking as input y1,ye,... and any necessary random coins, where tr is the se-
quence of messages exchanged by A and B as a result of this execution, and z
is B’s final output. If m; denotes the i-th message sent by, say, algorithm A, in
an interactive protocol (A(z) «— B(y)), we also denote the process to create
this message as m; < A(x,m1,...,m;—1), where my, ..., m;_; are the previous
messages exchanged between A and B.
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System scenario and entities. We consider an arbitrary system (or network)
containing services of interest to a number of users. Authorization to access
such services is checked by a server, via an execution of a 2-party protocol,
called identification scheme, run with the interested user. Such executions can
happen sequentially (each execution starting after the previous one is finished)
or concurrently (the server runs at the same time one execution with each one
of many users). For simplicity, we assume that the communication link between
each user and the server is private or not subject to attacks, although we note
that the model in which this link is also subject to adversary attacks is of or-
thogonal focus in the areas of cryptography and security (but is not part of the
standard model for identification schemes, as studied in the cryptography area,
and in this paper as well). We also denote a user with the term ‘prover’ and
the server with the term ‘verifier’, since in an identification scheme the user will
prove her/his identity to the server.

Algorithms and Correctness Requirement. Let o be a security parameter,
expressed in unary notation (i.e., 17). An identification scheme (with security
parameter o) consists of a setup algorithm or subprotocol, typically run between
the server and a given user, or by the user alone; and an identification subproto-
col, the latter in turn consisting of a prover algorithm, run by the user/prover,
and a verifier algorithm, run by the server/verifier.

The setup algorithms that we consider, denoted as KG, are only run by the
user. On input a security parameter ¢ in unary, algorithm KG returns a public
key pk and a matching secret key sk, in time at most polynomial in o.

The prover algorithm P is an interactive Turing machine, as defined in [15],
that, given as input pk, sk, and the messages exchanged so far with the verifier
algorithm, returns a new message for the server, in time polynomial in o.

The verifier algorithm V is also an interactive Turing machine, that, given as
input pk, and the messages exchanged so far with the prover algorithm, returns
a new message for the user running the prover algorithm. At the end of the
interaction with this user, V also returns a value in {accept,reject}, denoting
whether the server positively identifies the user or not. In both cases, V runs in
time polynomial in o.

Informally, the (natural) correctness requirement states that at any time,
a server positively identifies users with the appropriate secret key. A formal
definition follows.

Definition 1. Let o be a security parameter and let IS = (KG,P,V) be an
identification scheme. We say that IS satisfies correctness if it holds that

Prob|[ (pk, sk) «—KG(17); (tr, out) — (P (pk, sk) «—— V(pk)); out = accept) = 1].

Security Requirements. As typically done in the literature on identification
schemes, we study security against impersonation; that is, against an adversary
that, given all public keys (but no secret key), tries to convince the server to
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be an authorized user. We consider three types of impersonation attacks@, of
increasing strength:

1. Passive Impersonation Attack: after a pair of public and secret keys is gen-

erated, the adversary can choose to eavesdrop transcripts of executions of
the identification scheme between P and V, until it decides to make an im-
personation attempt; at this point, the adversary tries to make V accept
without knowing the secret key.

Active Impersonation Attack: after a pair of public and secret keys is gen-
erated, the adversary can choose to engage, acting as a server, in sequential
executions of the identification scheme with P until it decides to make an
impersonation attempt; at this point, the adversary tries to make V accept
without knowing the secret key.

Concurrent Impersonation Attack: this attack further extends the active at-
tack in that the adversary can choose to engage, acting as a server, in con-
current executions of the identification scheme with a different instantiation
of P (using the same public and private keys), until it decides to make an
impersonation attempt; thus, at any given time, the adversary can decide
to start a new session with a new instantiation of P, to continue a previous
session by sending the next verifier’'s message, or to start the impersonation
attempt.

Formally, for € { passive, active, concurrent }, for any polynomial-time al-
gorithm A = (A,, A,), we define the experiment Ea:p}CS’A, that describes the
a-type impersonation attack, and returns 1 (resp., 0) if the attack is successful
(resp., not successful). We detail the experiments for + = active and x = con-
current, and then describe the minor variation needed to obtain the experiment
for x = passive.

Bapyi(1%) Baployueren (1)
1. (pk, sk) —KG(17) 1. (pk, sk) —KG(17)
2. a+— Ay (19, pk) 2. (a,j, auz) — Ay (17, pk)
3. while (a # attack) do 3. trj—0
(tr,out) — (P(pk, sk) —— Ay (pk)) 4. while (a # attack) do
(a,auzx) — Ay(17, auz, tr, out) mesp<— Pj(pk, sk, tr;)
4. (tr,out) — (Ap(17, aux) «—— V(pk)) trj —trjlmesp
5. if out = accept then return: 1 (a,mesy, J, auz) «— Ay (17, auz, mesp)
else return: 0. if a = start then tr; —0

[

if a = continue then
trj —trj|lmesy,
5. (tr,out) — (Ap(17, aux) «—— V(pk))
6. if out = accept then return: 1
else return: 0.

In this paper we do not consider resetting impersonation attacks. Many popular
schemes based on proofs of knowledge, like the ones we consider, are immediately
insecure against resetting impersonation attacks.
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1S,4

passive

1S,4

Exp (19) is quickly obtained from Exp, ;0 (17) by replacing the line

(tr, out) «— (P(pk, sk) «—— A, (pk))’
in step 3 with the line

(tr, out) «— (P(pk, sk) «—— V (pk))’.

We are now ready to define the security requirement for impersonation against
passive, active or concurrent attacks.

Definition 2. Let o be a security parameter and let IS = (KG,P,V) be an
identification scheme. For = € { passive, active, concurrent }, we say that IS

is secure against an impersonation attack of type x if for any algorithm A =
(Ay, 4,), it holds that

Prob [ b EzplS4(19) : b= 1] <e

for some function € negligible in o.

Remarks and Performance Metrics. An identification scheme secure against
a concurrent (resp., active) attack is also secure secure against active (resp.,
passive) attack. Following previous papers in the literature, we also pay special
attention to minimize the time complexity of both prover and verifier algorithms,
as well as the communication complexity of the identification scheme (i.e., the
length of the messages exchanged during the identification subprotocol, as a
function of the security parameter).

3 Preliminaries

We start our analysis by recalling two preliminary schemes that will be useful
to introduce our results. First, we review the El-Gamal signature scheme [5],
which is used in different ways in both identification schemes described in this
paper. Second, we review a recent identification scheme in the standard model,
proposed in [I] and denoted as Beth-SI-0, which is obtained as a variant of Beth’s
identification scheme in the identity-based model [6].

3.1 El-Gamal Signature Scheme

The El-Gamal signature scheme is one of the earliest and most influential digital
signature schemes in the cryptography literature. We recall some notation and
then describe the scheme.

Some notation. Let 17 be a security parameter and let [ be a challenge length
function over the positive integers. Also, let G be a cyclic multiplicative group,
and let ¢,g denote its order and a generator, respectively. We say that G has
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prime order if ¢ is prime. We also say that a probabilistic polynomial-time al-
gorithm Gen is a prime-order cyclic multiplicative group generator, if, on input
19, generates a triple (desc(G), q, g), where desc(G) denotes the description of a
prime-order cyclic multiplicative group G, ¢ denotes its order and g is a generator

of G.

The El Gamal signature scheme. We actually recall a variant of the original
scheme, called hashed-message El Gamal signature scheme where the message is
processed by hashing it into an element of Z,, using a collision-resistant hash
function H. This scheme can be formally defined as a triple (KG, Sign, Verify)
of efficient algorithms, which are, in turn, defined as follows.

The Algorithm KG: On input security parameter 17, run the following instruc-
tions: let (desc(G), ¢, g) < Gen(17) and x«+—Zg, set y = ¢*, pk = (desc(G), q, g, X)
and sk = (pk, x), and return: (pk, sk).

The Algorithm Sign: On input sk = (pk,z) and message M, where pk
(desc(G), g, g), run the following instructions: let r «— Zq, set R = ¢" and s =
r~1(H(M) — zR) mod ¢, and return: (R, s)

The Algorithm Verify: On input pk, M, sig, where pk = (desc(G), g, g), and
sig = (R, s), check that X®R® = g#(M) If yes, return: 1 otherwise return: 0.

The El Gamal signature scheme (without the hashing-based message prepro-
cessing) was first presented in [5] and variants of it have been studied in several
works. Yet another variant, consisting of preprocessing the message by comput-
ing H(R, M) instead of H(M), was studied in [I9] and proved to be secure,
in the random oracle model, assuming the intractability of computing discrete
logarithms.

3.2 The Identification Scheme Beth-SI-0

The identification scheme proposed in [6] is an identity-based identification
scheme. In [I] an approach was proposed to uniquely bind any one in a large
class of identification schemes in the standard model (also called “convertible”
identification schemes) to an identification scheme in the identity-based model.
By using this approach, the authors in [I] surfaced an identification scheme in
the standard model that is uniquely related to (a slightly more efficient and
less general variant of) the identity-based identification scheme in [6]. They also
proved this scheme to be secure against passive impersonation, assuming the uni-
versal unforgeability under no-message attack of the hashed-message El Gamal
signature scheme [5]. We now give some notation and then recall the formal
description of the Beth-SI-0=(KG0,P0,V0) scheme.

Description of the scheme. In Figure 2 we formally describe the identifi-
cation scheme Beth-SI-0, based on any prime-order cyclic multiplicative group
generator Gen and any challenge length function .
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KEY GENERATION ALGORITHM: On input security parameter 17, run
the following instructions:

let (desc(G),q, g) < Gen(17);

let r,x, h«Zg;

set R—g", X «—g® and s«—r !(h — Rz)mod g;

set pk = (17,desc(G), q,9, X, h) and sk = (pk, R, s);

return: (pk, sk).

A

IDENTIFICATION PROTOCOL.
Common input: security parameter 1° and public key pk.
P’s private input: secret key sk.

P(round 1):
1. let y—Zg;
2. set Y = R7Y and send (R,Y) to V
V(round 2):
1. let ¢+Zqi(») and send c to P
P(round 3):
1. set z+—y 4+ csmod ¢ and send z to V
V(decision): if R,Y € G, z € Z,, and ¢°" = R*Y X°E, then return:
accept else return: reject.

Fig. 1. The modified Beth’s standard identification scheme from [I]

Properties of the scheme. Informally speaking, in scheme Beth-SI-0, the in-
teraction between the prover algorithm PO and the verifier algorithm VO can be
shown to have two properties: (1) it is a proof of knowledge of an El-Gamal signa-
ture (R, s) of the message h in the user’s public key pk; (2) it is a honest-verifier
zero-knowledge proof of knowledge of the value s in the El-Gamal signature.
Both properties have an important role in [I] to prove, in the random oracle
model, that scheme Beth-SI-0 secure against passive impersonation assuming
that the hashed-message ElGamal signature scheme is universally unforgeable
under no-message attacks. However, the security of Beth-SI-0 against active and
concurrent impersonation is left as an open problem in [I]. In the next section
we define a minor variation of Beth-SI-0, resulting in scheme Beth-SI-1, being
provable secure against active and concurrent impersonation, under appropriate
assumptions.

Note that the El-Gamal signature (R, s) of h can be computed by algorithm
PO using the secret key sk. Two further aspects are worth mentioning as an
introduction to the remaining schemes in the paper. First, the component R
of the El-Gamal signature (R, s) is part of the secret key sk, and in different
executions of scheme Beth-SI-0 the honest prover sends precisely R in the clear
to the verifier (but a dishonest prover may choose to use a value R’ # R instead).
Second, the prover algorithm PO can run multiple executions of scheme Beth-
SI-0 in polynomial time when using the same El-Gamal signature (R, s) as an
auxiliary input.
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In the scheme Beth-SI-1 that we analyze in Section Hl we slightly modify
Beth-SI-0 precisely in these two aspects. Specifically, we simply move the value
R from the secret key sk to the public key pk. One positive consequence from
this modification is that a dishonest prover will be easily caught if using a value
R’ # R during the identification protocol.

4 The Identification Scheme Beth-SI-1

In this section we present our modification to the identification scheme Beth-SI-0
in the standard model, as described in Section Bl The resulting scheme, Beth-
SI-1, is proved to be secure against concurrent (and thus, active) impersonation
under the one-more-dlog assumption. We obtain the following

Theorem 1. The identification scheme IS = Beth-SI-1 with group generator
Gen and challenge length function [ is secure against an impersonation attack
of concurrent type, under a one-more-dlog assumption. Specifically, for any ad-
versary A running in time t4, there exists an adversary B running in time
ta+(g+1)-O(k?), such that

1S,A _

Prob E‘Tpconcurrent(la) = ]'j| S 2 i) + Prob [ExpoBmd(la) = ]‘] )
where o denotes a security parameter, ¢ is the number of sessions run by A, k is
the length of group elements, experiment Expgf;ﬁwmm is defined in Section
and experiment Exp? . is defined in Section [

In the rest of this section we prove Theorem[l First we describe scheme Beth-SI-
1, then we present a one-more-dlog assumption, and finally we prove the scheme’s
security under this assumption, as stated in the theorem.

Description of scheme Beth-SI-1. Scheme Beth-SI-1=(KG1,P1,V1) is almost
identical to scheme Beth-SI-0. In particular, the interaction between the prover
algorithm P1 and the verifier algorithm V1 keeps the same two above properties:
(1) it is a proof of knowledge of an El-Gamal signature (R,s) of the message
h in the user’s public key pk; (2) it is a honest-verifier zero-knowledge proof of
knowledge of the value s in the El-Gamal signature. The main difference is as
follows: in KGO, the component R of the El-Gamal signature (R, s) is part of
the secret key sk, and in different executions of scheme Beth-SI-0 the honest
prover sends precisely R in the clear to the verifier (but a dishonest prover may
choose to use a value R’ # R). Instead, in KG1, the value R is part of the user’s
public key; thus, P1 does not need to send this value to V1 and in different
executions of scheme Beth-SI-0 both the honest prover and a dishonest prover
are bound to use precisely the same value R. For completeness, we still present
the formal description of Beth-SI-1 in Figure[2 (here, we use the same notations
as for scheme Beth-SI-0).
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KEY GENERATION ALGORITHM: On input security parameter 17, run
the following instructions:

let (desc(G),q, g) «+ Gen(17);

let r,x, h—Zg;

set Reg", X «g° and s«—7r *(h — Rz)mod ¢;

set pk = (17,desc(G), q, 9, R, X, h) and sk = (pk, s);

return: (pk, sk).

A

IDENTIFICATION PROTOCOL.
Common input: security parameter 1° and public key pk.
P’s private input: secret key sk.

P(round 1):
1. let y«—Zg;
2.set Y =R Yandsend Y toV
V(round 2):
1. let c+=Zy () and send c to P
P(round 3):
1. set z+—y + csmod ¢ and send z to V
V(decision): if R,Y € G, z € Z,, and ¢g°" = R*Y X°F| then return:
accept else return: reject.

Fig. 2. The identification scheme Beth-SI-1 in the standard model

The performance properties of Beth-SI-1 are essentially the same as for Beth-
SI-0. The only difference is in the communication complexity, as in Beth-SI-0, the
prover sends 2 elements from group G, while in Beth-SI-1 the prover sends only
1. We now concentrate on the proof that this scheme is secure against concurrent
impersonation under the one-more-dlog assumption. We start by reviewing the
latter assumption.

Our One-More-Dlog Assumption. We use the same notations on groups as
from the previous section. Informally speaking, the one-more-dlog assumption
postulates the hardness of obtaining n discrete logarithms of n challenge values
from group G, while the number of available queries to an oracle solving the
discrete logarithm problem is strictly less than n. An assumption of this type
(i.e., the one-more-RSA-inversion assumption) was first proposed in [2] and used
there to prove the security of Chaum’s blind signature scheme [9], and used in
[4] to prove the security of the Guillou-Quisquater’s digital signature scheme
[I7] under active and concurrent attacks. A one-more-dlog assumption was first
used in [I], where it was used to prove the security of Schnorr’s digital signature
scheme [20] under active and concurrent attacks. Our one-more-dlog assumption
considers an efficient adversary interacting with two oracles:

1. a challenge oracle C¢ that, on input (19, desc(G), ¢, g) and an empty query
query =1 from the adversary, returns a random value W € G,
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2. an inversion oracle I that, on input (17, desc(G), g, h), for some generator
h € G, and a query query = W from the adversary, returns value w such
that h* =W

and is formally stated as follows.

Definition 3. Let o be a security parameter, let (desc(G), ¢, ¢g) be the output
of algorithm Gen on input 17, let Cg be a challenge oracle and let I be an
inversion oracle.

Let Empfmd(l") denote the probabilistic experiment consisting of the follow-
ing steps: first, (desc(G),q,g) is obtained as the output of algorithm Gen on
input 17; second, tuple (w1,...,w,) is obtained as the output of A, after mak-
ing n queries to Cg and < n — 1 queries to I, for some n polynomial in o;
finally, the experiment returns 1 if W; = g%, fori =1,...,n, where Wy, ..., W,
were oracle Cg’s answers.

The one-more-dlog assumption states that for any algorithm A that has access
to oracles Cg, I and runs in polynomial time (not counting the time needed by
the oracles to answer A’s queries),

Prob [b— Expl,4(19) : b=1] <,

for some function e negligible in o, where the probability is over the random
coins of Gen and A.

We reiterate the warnings for assumptions of similar type [2/4], by mentioning
that one-more-dlog assumptions are instances of a relatively new type of as-
sumptions. Even though the discrete logarithm problem has been studied for a
long time, and is one of the few problems that cryptographers puts a significant
amount of trust on, the particular type of assumption that we use requires more
study before deserving the same amount of trust. Still, this assumption remains
a clean and natural statement about a number-theoretic problem, which is po-
tentially much simpler to analyze than the identification scheme based on it (a
simplification that is, after all, a major goal in complexity-theoretic cryptogra-
phy). Needless to say, using such an assumption to solve a problem that has
been of interest since 1988 [0] and explicitly open since 2004 [I] is better than
not solving the problem at all.

Proof of Security. We now prove that Beth-SI-1 is secure against concurrent
impersonation under the one-more-dlog assumption, as claimed in Theorem [II
The proof proceeds by contradiction. We assume that Beth-SI-1 is not secure
against concurrent impersonation and use the adversary breaking the Beth-SI-1
scheme to construct an adversary that violates the one-more-dlog assumption.

Formally, we assume (towards contradiction) that there exists a polynomial-
time algorithm A = (A,, Ap) for which the experiment Eacp}CS’A7 defined in Sec-
tion Bl returns 1 with some not negligible probability. Our goal is to show there

exists an algorithm B that takes (17, desc(G), g, g) as input, makes n queries to

2 Here is where our assumption differs from the assumption in [4].
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Input to B: (17, desc(G),q, g), as returned by an execution of KG1(17)
Instructions for B:

1. make a query to oracle C'¢ and obtain output Wy
2. let h,a’ —Z, and set X' —g* and R’ = W,
3. set pk = (17,desc(G),q, R, g, X', h)
4. repeat
(a, mes, 1, state) — A,(17, pk, state)
if a = start then
make a query L to oracle Cg(17,desc(G),q,g,-) and obtain output W;
send Y = W; to A,
tr; <Y and state— A,(17,tr;, state)
if a = continue then
let mes = ¢; € Zyi(o),
make query (¢°"Y ~1(X") """ to oracle I¢(17, desc(G), q, R, )
and obtain output z;
send z; to A,
tr; «—tri|z; and state<— A, (17, trs, state)
until (a = attack)
5. let ¢ be the number of sessions run by A,
6. let (Y, state) «— A,(1°, state)
7. let ¢) « Zyi(o) and send ¢} to A,
8. let (21, state) — A,(17, state, c})
9. rewind A, to the state just after returning pair (Y, state)

10. let ¢h«Zyi(oy and send ¢ to A,

11. let (25, state) « A,(17, state, ch)

12. if V1(pk,Y’, ¢, 21) = accept and V1(pk,Y’, c5, 25) = accept then
let s = (21 — 25)/(cy —c5) and wo =r = (h — R'z')/s
fori=1,...,q,

let w; = c;(h —2'R') — rz;
return: (wo, w1, ..., wq).
else return: L.

Fig. 3. The algorithm B trying to break the one-more-dlog assumption

challenge oracle C obtaining Wy, ..., W, as answers, makes < n — 1 queries to
an inversion oracle I, runs in time polynomial in ¢ (not counting the time taken
by oracles Cg, I to answer A’s queries), and, with probability not negligible in
o, returns tuple (wsq, ..., w,) such that W; = g% fori =1,...,n.

A formal description of algorithm B can be found in Figure[Bl First of all, B
constructs a public key pk for which the value X is replaced by a value X’ for
which it knows the discrete log 2’, and the value R is replaced by a value R’ equal
to the challenge Wy returned by the oracle Cg. Then, A = (A,, A,)’s concurrent
impersonation attack is simulated, where P’s messages to A, are simulated by B
using the challenge oracle (resp., the inversion oracle) to generate the first (resp.,
the second) of P’s messages in an identification session. Here, an important
technical point is that the inversion oracle is queried using R’ (rather than g)
as a generator. At the end of all concurrent identification sessions, algorithm B
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extracts from A, a witness s and uses it, together with value z’, to compute a
discrete logarithm r of R’ = Wy modulo g without querying the inversion oracle.
This value r is then used, together with value z’, to compute discrete logarithms
of Wi, ..., W, modulo g. This implies that B obtains ¢ + 1 discrete logarithms,
even if making ¢ + 1 queries to the challenge oracle and only ¢ queries to the
inversion oracle, thus turning A’s success in its concurrent attack into a violation
of the one-more-dlog assumption.

Let IS denote the scheme Beth-SI-1. Recall that we assume (towards contra-

diction) that adversary A = (A,, A,) is such that Prob [EprS’A (19) = 1}

concurrent

is not negligible in 0. We now would like to prove that Prob [Empfmd(l") = 1]
is not negligible in o.

Notations. We formally define two probabilities: the probability Prob[acc] =
Prob [ AccExp’¥(17) = 1] that V1 accepts in an execution of protocol Beth-SI-
1, when P1 and V1 are given additional state-related inputs st,, st,, respectively;
and the probability Prob[res] = Prob [ResEaprS(l") = 1] that V1 accepts
in both executions of protocol Beth-SI-1, when P1 and V1 are given additional
state-related inputs st,, st,,, respectively, and P1 is rewinded by V1. Experiments
AccExzp"™ (17), ResExp™ (1) are defined as follows.

AccExp'®(19) ResExp'®(17)
1. Y — P1(pk, stp) .Y — P1(pk, stp)
2. c—V1(pk,st,,Y) . c1—V1(pk, sty,Y)
3. z— P1(pk,stp,Y,c) . z1 P1(pk, stp, Y, c1)
4. if V1(pk, stv, Y, ¢, z) = accept then . c2—V1(pk, sty,Y)

return: 1 . 22— P1(pk, stp, Y, c2)

else return: 0. . Af V1(pk, stv, Y, c1, 21) = accept then

if V1(pk, stv,Y, c2, 22) = accept then
return: 1
5. return: 0.

WD W N

Analysis. First of all, we show that algorithm B perfectly simulates the view
of algorithm A during experiment Empif,’tfuwem(l"). This is easily seen for the
messages given from B to A, as these are computed in exactly the same way
in both experiments. To complete the proof of this fact, we consider the mes-
sages sent from B to A,. There are two types of such messages: message Y,
corresponding to the first prover’s message in protocol Beth-SI-1, and message
z, corresponding to the second prover’s message in protocol Beth-SI-1. Note that
in experiment Empﬁfﬁfurrenp message Y is computed as equal to R™Y, for some
random ¥y € Zg, and is thus uniformly distributed in group G, which is the same
distribution as the value Y = W, returned by oracle Cg in experiment ExpZ .
Furthermore, note that in experiment Expgf;l‘gmmm, message z is computed as
the value such that ¢°» = R*Y X°F, which is the discrete logarithm (modulo
R) of g¢"Y ~1(X)~¢E. This latter value is precisely how a query to oracle I is
computed by algorithm B, resulting in the answer z; given to A, in experiment
ExpoBmd'
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This analysis implies the following two facts.
Fact 1. Prob [Empgfﬁfuwem(l") = 1} = Prob [acc].
Fact 2. Prob [ ExzpZ (17) = 1] = Prob[res].

We now need a result relating the probability Prob [acc] that A, makes verifier
V1 accept to the probability Prob[res] that B can obtain two accepting con-
versations when rewinding A,. This is obtained as an application of the Reset
Lemma from [] (see also [3/19]) that applies to all 3-message public-coin pro-
tocols, including Beth-SI-1. As a corollary of this lemma, we have the following

Fact 3. [4] Prob[acc] < 271 4 Prob[res].
By combining Facts [, 2, Bl we obtain that

Prob | ExpS:4 (17) = 1} <274 4 Prob [EmpoBmd(lg) =1],

concurrent

as in the statement of Theorem [Il (Note that if Prob {EmpIS’A (19) = 1}

concurrent
is not negligible and I(c) = w(logo), then Prob [ EzpZ ,(17) =1] is also not
negligible.)

To complete the proof, we only need to calculate B’s running time. We note
that B runs A,, A,, makes queries to oracles Cg,Ig (recall that we do not
count the running time needed to answer such queries), and performs additions,
multiplications modulo ¢ and multiplications and exponentiations in the group
G, the latter being those that asymptotically dominate the running time. Overall,
B performs a constant number of exponentiations per session (see step 4) and 1
additional exponentiation (see step 2), so B’s running time can be bounded by
ta+ (g+1)-O(k®), where k is the length of an element in group G.

5 The Identification Scheme Beth-IBI-1

In this section we sketch a corollary of Theorem [Il Specifically, we consider
a natural transformation of the scheme Beth-SI-1 in the standard model into a
scheme, denoted as Beth-IBI-1, in the identity-based model. This transformation,
which we call the standard-to-identity-based conversion, has been used by [1] (and
earlier, in the context of signatures, by [II]) and has the following attractive
security preservation property: if the original identification scheme is secure in
the standard model against an impersonation attack of passive (resp., active)
(resp., concurrent) type, then the resulting identification scheme is secure in the
identity-based model against an impersonation attack of passive (resp., active)
(resp., concurrent) type. The transformation only applies to a class of schemes
that have a special convertibility property, as defined in [I], and its security
analysis only applies in the random oracle model.

Sketch of technical details. Our starting point is scheme Beth-SI-1, which is
a (more efficient but less general) variant in the standard model of the original
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identification scheme from [6]. We then note that this scheme enjoys the men-
tioned convertibility property, and invoke the standard-to-identity-based con-
version to obtain a scheme Beth-IBI-1. A similar approach was already used in
[1] to generate a scheme Beth-IBI-0, starting from the scheme Beth-SI-0 (also
recalled in Section[d) for which the authors proved security against passive imper-
sonation, assuming the unforgeability of the ElGamal signature scheme against
no-message attacks, and using the above security preservation property. Anal-
ogously, we combine this latter property with Theorem [ to prove that scheme
Beth-IBI-1 is secure against impersonation attacks of concurrent (and thus, ac-
tive) type, under the one-more-dlog assumption. The only new fact to establish
to obtain this result is proving that scheme Beth-SI-1 enjoys the convertibil-
ity property. This does not logically follow from the fact that Beth-SI-0 enjoys
the convertibility property, but the technique used to prove this latter claim
requires only a few natural modifications to work for Beth-SI-1 as well (details
omitted here). In what follows, we formally describe scheme Beth-IBI-1, which

SKG ALGORITHM: On input security parameter 1°, run the following
instructions:
1. let (desc(G),q, g) < Gen(17);
let r,x—Zg;
set R«—g" and X < g%;
set mpk = (17, desc(G), q, 9, R, X) and msk = (pk,r, z);
return: (mpk, msk).

A

UKG ALGORITHM: On input security parameter 17, random oracle H,
and mpk, msk,id, run the following instructions:

1. set h« H(id) and s« *(h — Rz) mod ¢;

2. set usk = (mpk,id, h, s);

3. return: usk.
IDENTIFICATION PROTOCOL.
Common input: security parameter 17, master public key mpk and
identity id.
P’s private input: user secret key usk.

P(round 1):
1. let y—Zg;
2. set Y =R Y andsend Y to V
V(round 2):
1. let c+Zyi(») and send c to P
P(round 3):
1. set z+—y 4+ csmod ¢ and send z to V
V(decision): compute h = H(id); if R,Y € G, z € Zg, and g°" =
R?Y X°E | then return: accept else return: reject.

Fig. 4. The identification scheme Beth-IBI-1 in the identity-based model
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is almost identical to scheme Beth-IBI-0, just like the corresponding schemes in
the standard model.

Formal description of scheme Beth-IBI-1. We first briefly recall the algo-
rithms in an identification scheme in the identity-based model. Here, an identifi-
cation scheme is a 4-tuple (rather than triple), consisting of two setup algorithms,
one prover and one verifier algorithm.

The server setup algorithm, denoted as SKG, is only run by the server. On
input a security parameter ¢ in unary, algorithm SKG returns a master public
key mpk and a master secret key msk in time at most polynomial in o.

The user setup algorithm, denoted as UKG, is also run by the server. On
input a security parameter ¢ in unary, public key mpk, secret key msk, and a
user identity id, algorithm UKG returns a user secret key sk;q in time at most
polynomial in o.

The prover and verifier algorithms P,V are as in the standard model, with
the only addition that they both take identity id as an additional input.

We formally describe scheme Beth-IBI-1 in Figure [
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Abstract. One of the most central and long-standing open questions in
combinatorial design theory concerns the existence of Steiner t-designs
for large values of ¢t. Although in his classical 1987 paper, L. Teirlinck
has shown that non-trivial ¢-designs exist for all values of ¢, no non-
trivial Steiner ¢t-design with ¢ > 5 has been constructed until now. Un-
derstandingly, the case t = 6 has received considerable attention. There
has been recent progress concerning the existence of highly symmetric
Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007),
pp. 453-476] that no non-trivial flag-transitive Steiner 6-design can ex-
ist. In this paper, we announce that essentially also no block-transitive
Steiner 6-design can exist.

1 Introduction

One of the most central and long-standing open questions in combinatorial design
theory concerns the existence of Steiner t-designs for large values of ¢. Although
in his classical 1987 paper, L. Teirlinck [46] has shown that non-trivial ¢-designs
exist for all values of ¢, no non-trivial Steiner ¢-design with ¢ > 5 has been
constructed until now. Understandingly, the case ¢ = 6 has received considerable
attention. There has been recent progress concerning the existence of highly
symmetric Steiner 6-designs: The author [25] showed that no non-trivial flag-
transitive Steiner 6-design can exist. Moreover, he classified all flag-transitive
Steiner ¢-designs with ¢ > 2 (see [22123242526] and [28] for a monograph).
These results answer a series of 40-year-old problems and generalize theorems
of J. Tits [47] and H. Liineburg [39]. Earlier, F. Buekenhout, A. Delandtsheer,
J. Doyen, P. Kleidman, M. Liebeck, and J. Sax] [6/I5I35837/43] had essentially
characterized all flag-transitive Steiner 2-designs. All these classification results
rely on the classification of the finite simple groups.

In this paper, we announce that essentially no block-transitive Steiner 6-design
can exist. This confirms a far-reaching conjecture of P. Cameron and C. Praeger
[10], stating that there are no non-trivial block-transitive 6-designs, for the im-
portant case of Steiner designs. Consequently, a further significant step towards

* The author gratefully acknowledges support by the Deutsche Forschungsgemein-
schaft (DFG).

J. Calmet, W. Geiselmann, J. Miiller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008
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an answer to the fundamental open question “Does there exist any non-trivial
Steiner 6-design?” is provided — at least in the case of highly symmetric designs,
quoting arguably Gian-Carlo Rota [42]:

“A combinatorial object without symmetries doesn’t exist - by
definition.”

2 Combinatorial Designs

The study of combinatorial designs deals with a crucial problem of combinato-
rial theory, that of arranging objects into patterns according to specified rules.
This is a subject of considerable interest in discrete mathematics and computer
science, amongst others. In particular, there are close connections of design
theory with graph theory [TT/48], finite and incidence geometry [5I16], group
theory [QIT2[T7J50], coding theory [III27)29I30], information theory [14], cryp-
tography [40/45], as well as classification algorithms [34].

Combinatorial designs may be regarded as generalizations of finite projec-
tive planes. More formally: For positive integers t < k < v and A, we define a
t-(v, k, A) design to be a finite incidence structure D = (X, B, I), where X de-
notes a set of points, | X| = v, and B a set of blocks, |B| = b, with the following
regularity properties: each block B € B is incident with k£ points, and each
t-subset of X is incident with A blocks. A flag of D is an incident point-block
pair (z,B) € I with z € X and B € B.

For historical reasons, a t-(v,k,A) design with A = 1 is called a Steiner
t-design (sometimes also a Steiner system). We note that in this case each
block is determined by the set of points which are incident with it, and thus
can be identified with a k-subset of X in a unique way. If ¢ < k < v, then we
speak of a non-trivial Steiner t-design. As a simple example, the vector space
Zy (n > 3) with block set B taken to be the set of all subsets of four dis-
tinct elements of Z7 whose vector sum is zero is a (boolean) Steiner 3-(2",4,1)
design. There are many infinite classes of Steiner t-designs for ¢ = 2 and 3,
however for ¢t =4 and 5 only a finite number are known. For a detailed treat-
ment of combinatorial designs, we refer to [II320/3T44]. In particular, [IJI3]
provide encyclopedic accounts of key results and contain existence tables with
known parameter sets.

In what follows, we are interested in t-designs which admit groups of au-
tomorphisms with sufficiently strong symmetry properties such as transitivity
on the blocks or on the flags. We consider automorphisms of a t-design D as
pairs of permutations on X and B which preserve incidence, and call a group
G < Aut(D) of automorphisms of D block-transitive (respectively flag-transitive,
point t-transitive, point t-homogeneous) if G acts transitively on the blocks (re-
spectively transitively on the flags, t-transitively on the points, t-homogeneously
on the points) of D. For short, D is said to be, e.g., block-transitive if D admits
a block-transitive group of automorphisms.
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3 Basic Properties and Existence Results

We give some basic properties and known results concerning the existence of
t-designs which are important for the remainder of the paper.

IfD=(X,B,1I)is at-(v,k,\) design with ¢ > 2, and = € X arbitrary, then
the derived design with respect to = is D, = (X4, By, I,;), where X, = X\{z},
B,={BeB:(x,B)e€l}and I, = I|x,«xB,. In this case, D is also called an
extension of D,. Obviously, D, is a (t — 1)-(v — 1,k — 1, \) design.

For D= (X,B,I) a Steiner t-design with G < Aut(D), let G, denote the
stabilizer of a point € X, and G the setwise stabilizer of a block B € B. For
z,y € X and B € B, we define G,y = G, NGy and Gy = G, NGpB.

For any = € IR, let | x| denote the greatest positive integer which is at most x.

All other notations remain as defined in Sect.

Basic necessary conditions for the existence of t-designs can be obtained via
elementary counting arguments (see, for instance, [I]):

Proposition 1. Let D = (X,B,I) be a t-(v,k,\) design, and for a positive

integer s < t, let S C X with |S| = s. Then the total number of blocks incident
with each element of S is given by

In particular, for t > 2, a t-(v,k,\) design is also an s-(v, k, ) design.

It is customary to set r := A; denoting the total number of blocks incident with
a given point (referring to the ‘replication number’ from statistical design of
experiments, one of the origins of design theory).

Corollary 1. Let D = (X, B, 1) be at-(v,k, \) design. Then the following holds:
(a) bk =vr.
v k
) (t>/\_b<t>.
(c) r(k—1)=X(v—1) fort>2.

Corollary 2. Let D= (X,B,1) be a t-(v,k,\) design. Then
)\(U B S) = 0 (mod <k B S))
t—s t—s
for each positive integer s < t.

For non-trivial Steiner ¢t-designs lower bounds for v in terms of k and ¢ can be
given (see P. Cameron [7, Thm. 3A.4], and J. Tits [47, Prop.2.2]):
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Theorem 1. If D = (X, B, 1) is a non-trivial Steiner t-design, then the follow-
ing holds:

(a) (Tits 1964): v > (t+1)(k—t+1).
(b) (Cameron 1976): v —t+1>(k—t+2)(k—t+1) fort > 2. If equality
holds, then (t,k,v) = (3,4,8),(3,6,22),(3,12,112), (4,7,23), or (5, 8,24).

We note that (a) is stronger for k < 2(¢t — 1), while (b) is stronger for
k> 2(t —1). For k = 2(t — 1) both assert that v > t? — 1.

The following result by R. Fisher [I8] is classical, generally known as “Fisher’s
Inequality”:

Theorem 2. (Fisher 1940). If D = (X, B, ) is a non-trivial 2-(v,k, \) design,
then b > v, that is, there are at least as many blocks as points in D.

An important generalization to arbitrary t-designs is due to D. Ray-Chaudhuri
and R. Wilson [41], Thm. 1]:

Theorem 3. (Ray-Chaudhuri & Wilson 1975). Let D = (X, B, I) be a t-(v,k, \)
design. If t is even, say t = 2s, and v > k + s, then b > (Z) If t is odd, say
t=2s+1,andv—1>k+s, thenb22(”;1).

Exploration of the construction of t-designs for large values of ¢ led to L. Teir-
linck’s celebrated theorem [46], one of the major results in design theory:

Theorem 4. (Teirlinck 1987). For every positive integer value of t, there exists
a non-trivial t-design.

However, although Teirlinck’s recursive methods are constructive, they only pro-
duce examples with tremendously large values of A. Until now no non-trivial
Steiner t-design with ¢ > 5 has been constructed.

Research Problem. Does there exist any non-trivial Steiner 6-design?

4 Approach via Symmetry

Besides recursive and set-theoretical approaches, many existence results for
t-designs with large ¢ have been obtained in recent years by the method of
orbiting under a group (see, e.g., [2], [I3, I11.4]). Specifically, the consideration of
t-designs which admit groups of automorphisms with sufficiently strong symme-
try properties seems to be of great importance in our context - quoting arguably
Gian-Carlo Rota [42]:

“A  combinatorial object without symmetries doesn’t exist - by
definition.”

We first state (cf. [49]):
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Proposition 2. Let t be a positive integer, and G a finite (abstract) group.
Then there is a t-design such that the full group Aut(D) of automorphisms has
a subgroup isomorphic to G.

One of the early important results regarding highly symmetric designs is due to
R. Block [3, Thm. 2]:

Proposition 3. (Block 1965). Let D = (X, B,I) be a non-trivial t-(v,k, A) de-
sign with t > 2. If G < Aut(D) acts block-transitively on D, then G acts point-
transitively on D.

For a 2-(v,k,1) design D, it is elementary that the point 2-transitivity of
G < Aut(D) implies its flag-transitivity. For 2-(v, k, A) designs, this implication
remains true if r and X are relatively prime (see, e.g., [16, Chap. 2.3, Lemma §8]).
However, for t-(v, k, A) designs with ¢ > 3, it can be deduced from Proposition 3]
that always the converse holds (see [4] or [22] Lemma 2]):

Proposition 4. Let D = (X, B,1I) be a non-trivial t-(v,k, \) design with t > 3.
If G<Auw(D) acts flag-transitively on D, then G acts point
2-transitively on D.

Investigating highly symmetric t-designs for large values of ¢, P. Cameron and
C. Praeger [10, Thm. 2.1] deduced from Theorem [B] and Proposition ] the fol-
lowing assertion:

Proposition 5. (Cameron & Praeger 1993). Let D = (X, B, 1) be a t-(v,k, \)
design with t > 2. Then, the following holds:

(a) If G < Aut(D) acts block-transitively on D, then G also acts point
|t/2]|-homogeneously on D.

(b) If G <Aut(D) acts flag-transitively on D, then G also acts point
[(t + 1)/2]-homogeneously on D.

As for t > 7 the flag-transitivity, respectively for ¢ > 8 the block-transitivity of
G < Aut(D) implies at least its point 4-homogeneity, they obtained the following
restrictions as a fairly direct consequence of the finite simple group classification
(cf. [10, Thm.1.1]):

Theorem 5. (Cameron & Praeger 1993). Let D = (X, B,I) be a t-(v,k, A) de-
sign. If G < Aut(D) acts block-transitively on D thent < 7, while if G < Aut(D)
acts flag-transitively on D then t < 6.

Moreover, they formulated the following far-reaching conjecture (cf. [I0, Conj. 1.2]):

Congjecture. (Cameron & Praeger 1993). There are no non-trivial block-transitive
6-designs.

It has been shown recently by the author [25] that no non-trivial flag-transitive
Steiner 6-design can exist. Moreover, he classified all flag-transitive Steiner
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t-designs with ¢t > 2 (see [2223/2412526] and [28] for a monograph). These re-
sults make use of the classification of all finite 2-transitive permutation groups,
which itself relies on the finite simple group classification. The characterizations
answer a series of 40-year-old problems and generalize theorems of J. Tits [47] and
H. Liineburg [39]. Earlier, F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleid-
man, M. Liebeck, and J. Saxl [6T535/37/43] had essentially characterized all finite
flag-transitive linear spaces, that is flag-transitive Steiner 2-designs. Their result,
which also relies on the finite simple group classification, starts with a classical re-
sult of Higman and McLaughlin [21I] and uses the O’Nan-Scott Theorem for finite
primitive permutation groups. For the incomplete case with a 1-dimensional affine
group of automorphisms, we refer to [6 Sect. 4] and [33] Sect. 3].

5 Non-existence of Block-Transitive Steiner 6-Designs

We assert the following main result:

Main Theorem. Let D = (X,B,I) be a non-trivial Steiner 6-design. Then
G < Aut(D) cannot act block-transitively on D, except possibly when
G = PI'L(2,p°) with p =2 or 3 and e is an odd prime power.

We will briefly outline the main ingredients of the proof. The long and technical
details will appear elsewhere:

e In order to investigate block-transitive Steiner 6-designs, we can in view
of Proposition [l (a) make use of the classification of all finite 3-homogeneous
permutation groups, which itself relies on the finite simple group classification
(cf. [BITIU32I36U38]). The list of groups which have to be examined is as follows:

Let G be a finite 3-homogeneous permutation group on a set X with | X| > 4.
Then G is either of

(A) Affine Type: G contains a regular normal subgroup 7" which is elemen-
tary Abelian of order v = 2¢. If we identify G with a group of affine transforma-
tions

z—z9 4 u

of V =V (d,2), where g € Gy and u € V, then particularly one of the following
occurs:

(1) G~ AGL(1,8), AT'L(1,8), or AI'L(1,32)
(2) Go = SL(d,2), d>2
(3) Go= A7, v=21

or

(B) Almost Simple Type: G contains a simple normal subgroup N, and
N < G < Aut(N). In particular, one of the following holds, where N and v = | X|
are given as follows:



(1) Ay, v>5

(2) PSL(2,q9),g>3,v=q+1

(3) My, v=11,12,22,23,24 (Mathieu groups)
(4) M1, v=12

We note that if ¢ is odd, then PSL(2, q) is 3-homogeneous for ¢ = 3 (mod 4),
but not for ¢ =1 (mod 4), and hence not every group G of almost simple type
satisfying (2) is 3-homogeneous on X.

o If G < Aut(D) acts block-transitively on any Steiner ¢-design D with ¢ > 6,
then in particular G acts point 2-transitively on D by Proposition[l (a). Applying
Lemma[T] (b) yields the equation

_ (D) _ v(v—=1)|Gayl
- - )

) IG5l
where z and y are two distinct points in X and B is a block in B. Combined
with the combinatorial properties in Sect. [ this arithmetical condition yields in
some of the cases under consideration immediately strong results. In other cases,
particular Diophantine equations arise which have to be examined in more detail.

e As for the flag-transitive treatment (cf. [25)26]), the projective group con-
taining PSL(2, q) — although group-theoretically well understood — requires some
complicated analysis in this context. This includes a detailed consideration of
the orbit-lengths from the action of subgroups of PSL(2, q) on the points of the
projective line. The cases excluded from the theorem remain elusive. However,
it seems to be very unlikely that admissible parameter sets of Steiner 6-designs
can be found in view of the arithmetical conditions that are imposed in these
cases.
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Abstract. This second paper on constructions of spatial configurations
follows the author’s paper of 1994 [2]. For the first time again new spatial
configurations are constructed, in particular a configuration (33s)2, the
smallest known configuration (vs)2, and several configurations (vg)2, in
particular for v = 40 and for v > 43.

1 Introduction and Notation

The most important definitions and notations are repeated here from [2]. For
further details the reader is referred to this paper and to [I] where the connection
to possible applications like radio astronomy and engineering sciences is given.

Definition 1.1. A A-configuration (v, bg)x is a finite incidence structure con-
sisting of a set of points and a set of subsets ( called lines ) of this set such
that

1. there are v points and b lines,

2. there are k points on each line and r lines through each point,

3. two different points are connected by at most A lines and two different lines
intersect each other in at most A points.

For A =1 we obtain 1-configurations or just configurations.

For A = 2 we obtain 2-configurations or spatial configurations.

Analogously to the case of 1-configurations the following multigraph can be
defined.

Definition 1.2. The configuration multigraph of a 2-configuration (v, by ) has
as vertex set the set of v points. There is a double edge between two vertices iff
the two points are not on a common line of the configuration. There is a simple
edge iff the two points are on a unique common line. There is no edge iff the two
points are on exactly two common lines.

Remark 1.3

1. Since the dual structure of a 2-configuration is also a 2-configuration it can
be assumed that b > v.

2. Necessary conditions for the existence of a 2-configuration (v,,bg)s are
vr =bk andv>1+r(k—1)/2.

3. The configuration multigraph is reqular of degree d. d =2(v —1) —r(k—1)
is called the deficiency of the 2-configuration.

J. Calmet, W. Geiselmann, J. Miiller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 27 2008.
© Springer-Verlag Berlin Heidelberg 2008
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In this paper symmetric 2-configurations ( i.e. v = b and hence r = k ) will be
discussed and denoted by (v )s instead of (vg, vk ).

Concerning the relation of spatial configurations to usual configurations the
reader is referred to an author’s handbook article on configurations [3].

2 New Constructions

The solutions are given as difference triangles where the first row is the base row
and the i*" row contains all the sums of i consecutive numbers of the base row.
No number must occur more than twice and v/2 must occur at most once (all
numbers are considered mod (v)). A base block of the 2-configuration is obtained
by taking 0 and the first entry of each row. All blocks are then constructed by
developing this block mod (v), i.e. adding 1 to each element (the second block),
adding 2 (the third block), ... and finally adding v — 1 (the last block).

21 k<7

All existence problems for k < 6 were solved in [2].

For k = 7 all configurations(vr)e with v > 24 are constructed in [2]. The
nonexistence of a configuration (227)3 is a consequence of the theorem of Bruck-
Ryser-Chowla. Such a configuration would be a biplane (22,7,2) (see any book
on design theory). It is mentioned in a recent paper by Kaski and Ostergard [4]
that there is no configuration (237)a.

22 k=8

For k = 8 the following difference triangle, already obtained in [2], implies the
existence of 2-configurations (vs)s for all v > 34.

21

The following newly constructed triangle yields a 2-configuration (33g)2, up
to now the smallest 2-configuration with k = 8.

2 6 4 3 1 1 5
§ 10 7 4 2 6
12 13 8 5 7
15 14 9 10
16 15 14
17 20
22
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Theorem 2.1 There is a configuration (vs)2 for all v > 33. For 30 < v < 32

the existence is in doubt. There is no configuration (29s)a.

23 k=9

The above triangle yields the existence of a configuration (40g)s.

3 1 4 2 5 1 10 3
4 5 6 7 6 11 13
8 7 11 8 16 14

10 12 12 18 19
15 13 22 21
16 23 25
26 26

This triangle implies the existence of a configuration (439)s.

3 2 1 9 1 6 2 5
5 3 10 10 7 8 7
6 12 11 16 9 13
15 13 17 18 14
6 19 19 23
22 21 24
24 26
29

This triangle yields the existence of a configuration (44g)s.

1 5 2 2 8 1 3 3
6 7 4 10 9 4 6
8 9 12 11 12 7
10 17 13 14 15
18 18 16 17
19 21 19
22 24
25

This triangle yields the existence of a configuration (vg)s for all v > 45.
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Theorem 2.2 There is a configuration (vg)e for v = 37,38,40 and all v > 43.
For v =39,41,42 the existence is in doubt.

Remark 2.3 The existence of a configuration (379)2 ( a biplane) and a config-
uration (389)2 (a semibiplane) was discussed in [2].

3 The Existence Table of 2-Configurations

In this last section the results are summarized and exhibited in an updated table.
An entry in plain type means that the corresponding configuration exists.
Bold configurations do not exist.

A blank space shows that the existence problem is open.

Deficiency 0 2 4 6 8 10 12 14
k
3 43 53 63 T3 85 93105114
4 Ty 84 94104 114124 134 144
5 115 125 135 145 155 165 175 185
6 166 17 186 196 206 216 226 236
722, 237 247 257 267 277 287 29,

8 29g 335 345 355 36g
9 379 389 409 439 449
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Abstract. In this paper we construct constant dimension codes with prescribed
minimum distance. There is an increased interest in subspace codes in general
since a paper [13]] by Kotter and Kschischang where they gave an application in
network coding. There is also a connection to the theory of designs over finite
fields. We will modify a method of Braun, Kerber and Laue [[7] which they used
for the construction of designs over finite fields to construct constant dimension
codes. Using this approach we found many new constant dimension codes with a
larger number of codewords than previously known codes. We finally give a table
of the best constant dimension codes we found.

Keywords: network coding, g-analogue of Steiner systems, subspace codes.

1 Introduction

1.1 Subspace Codes

In [13] R. Koétter and F. R. Kschischang developed the theory of subspace codes for
applications in network coding. We will recapitulate their definitions in a slightly dif-
ferent manner. We denote by L(GF(q)”) the lattice of all subspaces of the space of
dimension v over the finite field with ¢ elements together with the partial order is given
by inclusion. A subspace code C'is a subset of L(GF'(q)¥). If all the subspaces in C
are of the same dimension then C' is a constant dimension code.

The subspace distance between two spaces V and W in L(GF(q)") is defined as

ds(V,W) = dim(V + W) — dim(V N W)

which is equal to
dim(V) + dim(W) — 2dim(V N W).

This defines a metric on L(GF(q)?). The minimum (subspace) distance of a sub-
space code C' is defined as

Dg(C) :=min{ds(V,W): V,W e C andV # W}.

J. Calmet, W. Geiselmann, J. Miiller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 31 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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We define now the optimal (subspace) code problem:

(P1) For a given lattice L(GF'(q)”) (based on inclusion) fix a minimum
(subspace) distance d and find the maximal number m of subspaces V1, ..., V,,
in L(GF(q)") such that the corresponding subspace code C = {V4,...,V,,}
has at least minimum distance d.

The following point of view is useful for the study of subspace codes: We first define
the Hamming graph with parameters v and g by taking as vertex-set the words of length
v over the alphabet GF'(¢) and connecting two vertices u, w by an edge if the minimum
distance between u and w is equal to one. One of the classical problems in coding theory
can then be stated as follows:

(P2) Given the Hamming graph of all words of length v and a minimum
distance d find a maximal number m of words such that the pairwise minimum
distance is at least d.

If we substitute the Hamming graph by the Hasse diagram of L(GF(q)¥) (vertices
are the subspaces of GF'(q)” and two subspaces are connected by an edge if they are
direct neighbors in the partial order arising from inclusion) the problem (P2) becomes
problem (P1). Both problems are special cases of a packing problem in a graph. If
we start with problem (P2) and use the ’field with one element’ we get problem (P1).
Because of this property we say (P2) is the g—analogue of (P1). This connection is well
known (e.g. [117]) and will be useful in the following. Since the publication of the
paper by Kotter and Kschischang the constant dimension codes as the g—analogue of
the constant weight codes were studied in a series of papers [10/12J23]].

1.2 g—Analogues of Designs

At — (v,k, ) design is a set C' of k—element subsets (called blocks) of the set
{1,...,v} such that each t—element subset of {1,...,v} appears in exactly A blocks.
The special case of A = 1 is called a Steiner system.

The same construction which was used to connect problem (P1) to (P2) in the sub-
section above can be used to define the g—analogue of a ¢-design. A t — (v, k, A) de-
sign over the finite field GF'(q) is a multiset C' of k—dimensional subspaces (called
g-blocks) of the v-dimensional vector space GF'(q)? such that each t—dimensional
subspace of GF(q)" is a subspace of exactly A g—blocks.

The connection with the constant dimension codes is given by the following ob-
servation in the case of a g—analogue of a Steiner system: Given a g—analogue of a
t— (v, k, 1) design C' we get a constant dimension code of minimum distance 2(k — ¢t +
1). As each ¢-dimensional space is contained in exactly one k-dimensional subspace
the intersection between two spaces from C' is at most (¢ — 1)—dimensional. There-
fore the minimum distance of C' is at least 2(k — ¢ + 1). On the other hand given any
(t — 1)—dimensional subspace V' we can find two t—dimensional spaces U, W with
intersection V' and then two unique g—blocks containing U and W. The minimum dis-
tance between these g—blocks is 2(k — ¢ + 1).
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g-analogues of designs were introduced by Thomas in 1987 [[19]. Later they were
studied in a paper by Braun et al. [7] where the authors constructed the first non-trivial
g—analogue of a 3-design. We will use the methods described in their paper to construct
constant dimension codes.

In later papers by Thomas [20] and Etzion and Schwartz [17] it was shown that there
are severe restrictions on the possible existence of g-analogues of Steiner systems. We
will search for a collection of subspaces satisfying only the conditions given by (P1)
and not for the stronger condition satisfied by a g-analogue of a Steiner system. But in
general the methods described in this paper can also be used for the search for Steiner
systems.

2 Construction of Constant Dimension Codes

In this section we describe how to construct a constant dimension code C' using a system
of Diophantine linear equations and inequalities. Due to the definition of the subspace
distance for all VW € C we have dg(V,W) = 2k — 2dim(V N W) where k is
the dimension of the code. Thus the minimum subspace distance has to be an even
number less or equal to 2k. To construct a constant dimension code of dimension k and
minimum subspace distance 2d we have to find n subspaces {1, ..., V;,} of dimension
k such that there is no subspace of dimension k — d + 1 contained in two of the selected
k-spaces. We define M as the incidence matrix of the incidence system between the
(k — d + 1)-spaces (labeling the rows of M) and the k-spaces (labeling the columns):

MWV =

s

1 if V contains W,
0  otherwise.

Using M we get the description of a constant dimension code as the solution of a
Diophantine system. We denote by s the number of columns of M.

Theorem 1

There is a constant dimension code with m codewords and minimum distance at least
2d if and only if there is a (0/1)—solution v = (x1,...,15)" of the following system
of one equation and a set of inequalities:

zs:xi =m (1)
i=1

1
Mz < |:]. 2)

1
This set of inequalities has to be read as follows: A solution z has the property that the
product of = with a single row of M is 0 or 1. Otherwise if the inner product of x with
the row labeled by W is larger than one, then the subspace W is contained in more

than one subspaces V. To get the constant dimension code corresponding to a solution
we have to use the (0/1)—vector x as the characteristic vector of a subset of the set
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of all k—dimensional subspaces of GF'(¢)". Theorem[Ilis a generalization of the Dio-
phantine system describing the search for a g—analogue of a Steiner system which was
given in [[7]).

Corollary 1. [7)]

There is a q—analogue of a (k — d + 1) — (v, k, 1) design with b blocks if and only if
there is a (0/1)—solution & = (x1,...,25)T of the following system of Diophantine
linear equations:

Zs:xi =b 3)
i=1

1
Mz=|:|. 4)
1

The size of these problems is given by the number of subspaces in GF'(q)?. In general
this number is growing too fast. The number of k-dimensional subspaces of GF(q)" is
given by the ¢g-binomial coefficients:

K TR

Already in the smallest case of a 2—analogue of the Fano plane (v =7,k = 3,d = 2)
the matrix M has 11811 columns and 2667 rows.

3 Constant Dimension Codes with Prescribed Automorphisms

To handle also larger cases we apply the following method. We no longer look for
an arbitrary constant dimension code. We are now only interested in a set of spaces
which have a prescribed group of automorphisms. An automorphism ¢ of set C =
{V1,...,Vin} is an element from GL(v, GF(q)) such that C' = {p(V1),...,o(Vin)}.
We denote by G the group of automorphisms of C, which is a subgroup
of GL(v, GF(q)).

The main advantage of prescribing automorphisms is that the size of the system of
equations is much smaller. The number of variables will be the number of orbits of G
on the k-spaces. The number of equations or inequalities will be the number of orbits
on the (k — d + 1)-spaces. The construction process will then have two steps:

— In a first step the solution of a construction problem is described as a solution of a
Diophantine system of linear equations.

— In a second step the size of the linear system is reduced by prescribing automor-
phisms.

This construction method is a general approach that works for many discrete structures
as designs [3l14], g-analogs of designs [0/7], arcs in projective geometries [8]], linear
codes [2i415I15]] or quantum codes [21]].
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The general method is as follows: The matrix M is reduced by adding up columns
(labeled by the k-spaces) corresponding to the orbits of G. Now because of the relation

W subspace of V' <= (W) subspace of (V') 3)

for any k-space V and (k — d)-space W and any automorphism ¢ € G the rows cor-
responding to lines in an orbit under G are equal. Therefore the redundant rows are
removed from the system of equations and we get a smaller matrix denoted by M©.
The number of rows of M is then the number of orbits of G on the (k — d + 1)-spaces.
The number of columns of M & is the number of orbits of G on the k-spaces. We denote
by w1, . . . the orbits on the k-spaces and by (21, . . . the orbits on the (k — d + 1)-spaces.
For an entry of M we have:

G .
Mg, . =NV €w;: W isasubspace of V}|
where W is a representative of the orbit {2; of (k — d + 1)-spaces. Because of property
(@) the matrix M is well-defined as the definition of M g“wj is independent of the rep-
resentative W. Now we can restate the above theorem in a version with the condensed
matrix ME :

Theorem 2

Let G be a subgroup of GL(v, GF(q)). There is a constant dimension code of length
m and minimum distance at least 2d whose group of automorphisms contains G as
a subgroup if, and only if, there is a (0/1)—solution x = (z1,...)T of the following
system of one equation and a set of inequalities:

> lwilzi =m (6)

i
1
MGz <|:|. (7)
1
There is one further reduction possible. We are looking for a (0/1)—solution where
each inner product of a row of M and the vector x is less or equal to 1. We can
remove columns of M with entries greater than 1. This gives a further reduction of
the size of M. After this last removal of columns we again check on equal rows and
also on rows containing only entries equal to zero. We remove these all zero rows and
all but one copy of the equal rows.
In order to locate large constant dimension codes with given parameters ¢, k and 2d
we try do find feasible solutions z = (1, ...)T of the system of equations of Theorem

[ for a suitable chosen group G and a suitable chosen length m. Here we remark that
we have the freedom to change equation (6) of Theorem[2]into

Z |wilz; > m.
i

For this final step we use some software. Currently we use a variant of an LLL based
solver written by Alfred Wassermann [22] or a program by Johannes Zwanzger [24]]



36 A. Kohnert and S. Kurz

which uses some heuristics especially developed for applications in coding theory. The
advantage of the LLL based solver is that we definitely know whether there exist feasi-
ble solutions or not whenever the program runs long enough to terminate. Unfortunately
for the examples of Section[3] this never happens so that practically we could only use
this solver as a heuristic to quickly find feasible solutions.

If we change equation (6) into a target function

flz) = f(x1,...) = Z |w |2

we obtain a formulation as a binary linear optimization problem. In this case we can
apply the commercial ILOG CPLEX 11.1.0 software for integer linear programs. The
big advantage of this approach is that at every time of the solution process we have
lower bounds, corresponding to a feasible solution with the largest f(xz)-value found so
far, and upper bounds on f(z).

We can even reformulate our optimization problem in the language of graph theory.
Here we consider the variable indices ¢ as vertices of a graph G each having weight
|wi|. The edges of G are implicitely given by inequality (7). Therefore let us denote the
ith row of M < by M ZG . Now the inequality MZG < 1 translates into the condition that
the set '

Ci::{j : ijzl}

is an independence set in G. To construct the graph G we start with a complete graph and
for each row M, ZG we delete all edges between vertices in C;. Now an optimal solution
of the binary linear program corresponds to a maximum weight clique in G. Again there
exist heuristics and exact algorithms to determine maximum weight cliques in graphs.
An available software package for this purpose is e.g. CLIQUER [16].

This approach allows to use clique bounds from algebraic graph theory to obtain
upper bounds on the target function f(x). In the case where we are able to locate large
independent sets in G which are not subsets of the C; we can use them to add further
inequalities to (7). If those independent sets are large enough and not too many then
a solver for integer linear programs highly benefits from the corresponding additional
inequalities.

For theoretical upper bounds and practical reasons how to quickly or exhaustively
locate solutions of our system of Theorem[2lit is very useful to have different formula-
tions of our problem to be able to apply different solvers.

3.1 Example

We start with the space GF(2)7. We now describe the construction of a subspace code

with 304 codewords and constant dimension equal to 3. This code will have minimum

subspace distance 4. The matrix M is the incidence matrix between the 3—dimensional

subspaces of GF(2)7 and the 2—dimensional subspaces. Without further reductions

this matrix has [;] = 11811 columns and ; = 2667 rows. We prescribe now a
2

group GG of automorphisms generated by a single element:
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1

1
G::< 1 >
11 11

11 11
111 11

This group G has 567 orbits on the 3-spaces and 129 orbits on the 2-spaces. Using
Theorem[3 we can formulate the search for a large constant dimension code as a binary
linear maximization problem having 129 constraints and 567 binary variables. After a
presolving step, automatically performed by the ILOG CPLEX software, there remain
only 477 binary variables and 126 constraints with 3306 nonzero coefficients.

After some minutes the software found a (0/1)—solution with 16 variables equal to
one. Taking the union of the corresponding 16 orbits on the 3-spaces of GF'(2)7 we get
a constant dimension code with 304 codewords having minimum distance 4. Previously
known was a code with 289 codewords obtained from a construction using rank-metric
codes ([18]] p.28) and another code consisting of 294 subspaces discovered by A. Vardy
(private email communication).

In general it is difficult to construct the condensed matrix M for an arbitrary group
and larger parameters v and k as the number of subspaces given by the ¢g-binomial coef-

ficient [Z] grows very fast and it becomes difficult to compute all the orbits necessary
q
for the computation of M <. In the following section we give a method to get a similar

matrix in special cases.

4 Using Singer Cycles

A special case of the above method is the use of a Singer cycle. We use for the reduction
a Singer subgroup of GL(v, GF(q)) which acts transitively on the one-dimensional
subspaces of GF(q)". Singer cycles have been used in many cases for the construction
of interesting geometric objects [9]. We will now describe a method to construct a set
C of k-subspaces of GF'(q)¥ with the following two special properties:

1. C has the Singer subgroup as a subgroup of its group of automorphisms.
2. The dimension of the intersection of two spaces from C' is at most one.

Of course such a set C is a constant dimension subspace code of minimum distance
2(k —1). This is a special case of the situation of Theorem[3l We now fix one generator
g € GL(v,GF(q)) of a Singer subgroup GG and a one-dimensional subspace V' of
GF(q)". As G acts transitively on the one-dimensional subspaces we can label any

one-dimensional subspace W by the unique exponent ¢ between 0 and [ := [ﬂ -1
q

with the property that W = ¢‘V. Given a k-space U we can describe it by the set of
one-dimensional (i.e. numbers between 0 and /) subspaces contained in U. Given such
a description of a k-space it is now easy to get all the spaces building the orbit under
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the Singer subgroup GG. Adding one to each number results in the complete orbit by
performing it [ times.

Example 1. ¢q=2,v=>5k=2

A two-dimensional binary subspace contains three one-dimensional subspaces. We get
a two-dimensional space by taking the two one-dimensional spaces labeled {0, 1} and
the third one given by the linear combination of these two will have a certain number, in
this example {14}. Therefore we have a two dimensional space described by the three
numbers {0, 1, 14}. To get the complete orbit under the Singer subgroup we simply have
to increase the numbers by one for each multiplication by the generator g of the Singer
subgroup. The orbit length of the Singer subgroup is 31 and the orbit is built by the 31
sets: {0,1,14},{1,2,15},...,{16,17,30},{0,17,18},...{12,29,30}, {0, 13,30}.

To describe the different orbits of the Singer subgroup we build the following set of
pairwise distances:

Let s be the number of one-dimensional subspaces in k-space. Let {v1,...,vs} C
{0,1,...,1} be the set of s numbers describing a fixed k-space U. Denote by dy; ;;
the distance between the two numbers v; and v; modulo the length of the Singer cycle.
dy;, ;3 is a number between 1 and //2. We define the multiset Dy := {dy; ;3 : 1 <@ <
Jj < s}. We call Dy the distance distribution of the subspace U. All the spaces in an
orbit of a Singer subgroup have the same distance distribution and on the other hand
different orbits have different distance distribution. We therefore also say that Dy; is the
distance distribution of the orbit.

We use these distance distribution to label the different orbits of the Singer subgroup
of the k-spaces. The first observation is:

Lemma 1. A Singer orbit as a subspace code

An orbit C = {Vy, ..., Vi} of a Singer subgroup on the k-subspaces of GF(q)" is a
subspace code of minimum distance 2(k — 1) if and only if the distance distribution of
the orbit has no repeated numbers.

Proof. We have to show that the intersection of any pair of spaces in C' has at most one
one-dimensional space in common. Having no repeated entry in the distance distribu-
tion means that a pair of numbers (i.e. pair of one-dimensional subspaces) in a g—block
b of C can not be built again by shifting the numbers in b using the operation of the
Singer subgroup on b.

The same is true if we want to construct a subspace code by combining several orbits
of the Singer subgroup. We have to check that the intersection between two spaces is at
most one-dimensional. For this we define the matrix S, whose columns are labeled by
the orbits £2; of the Singer subgroup on the k-dimensional subspaces of GF'(q)" and the
rows are labeled by the possible numbers ¢ € {0,...,1/2} in the distance distribution
of the k-spaces. Denoting by Dy, the distance distribution of the j—th orbit, we define
an entry of the matrix S by

g . [lifieDg
“25 "=\ 0 otherwise. -
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Using this matrix S we have the following characterization of constant dimension codes
with prescribed automorphisms:

Theorem 3

There is a constant dimension code C with n.- (1 + 1) codewords and minimum distance
at least 2(k — 1) whose group of automorphisms contains the Singer subgroup as a
subgroup if and only if there is a (0/1)—solution x = (z1,...)" of the following system
of one equation and a set of inequalities:

Zmi =n (8)

1
Se< | ]. 9)
1
This is the final system of one Diophantine linear equation together with {/2 + 1 in-
equalities which we successfully solved in several cases.

5 Results

As mentioned in the introduction there is an increased interest on constant dimension
codes with a large number of codewords for a given minimum subspace distance. There
are (very) recent ArXiV-preprints [LO/11/18] giving some constructions for those codes.

Here we restrict ourselves on the binary field ¢ = 2 and dimension k¥ = 3 and
minimum subspace distance dg = 4.

Using the approach described in Section [] it was possible to construct constant di-
mension codes using the Singer cycle with the following parameters. We denote by n
the number of orbits used to build a solution, by dg we denote the minimum space
distance of the corresponding constant dimension code:

n = number total number best
v k of used orbits of orbits = number of codewords known dg = 2d
6 3 1 19 1-63 =063 71[18] 4
73 2 93 2127 =254 294 4
8 3 5 381 5-255 = 1275* 1164[18] 4
9 3 11 1542 11-511 = 5621* 4657[18] 4
103 21 6205 211023 = 21483*  18631[18] 4
113 39 24893 392047 = 79833*  74531[18] 4
123 77 99718 774095 = 315315*  298139[18] 4
133 141 399165  141-8191 = 1154931 1192587[18] 4
14 3 255 1597245 25516383 = 4177665 4770411[18] 4

In [11]) the authors defined the number A, (v, dg, k) as the maximal number of code-
words in a constant dimension code of minimum distance dg. They derived lower and
upper bounds. We have implemented the construction method described in [18]] to ob-
tain the resulting code sizes which give the lower bounds for A, (v, dg, k) for v > 9.
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In the above table we marked codes which improved the lower bounds on A, (v, dg, k)
with an x. We would like to remark that for 6 < v < 8 our results are optimal for the
Singer cycle as a subgroup of the group of automorphisms (using the formulation as a
binary linear program). So far, for v = 9 a code size of n = 12 is theoretically possible.
(In this case the corresponding binary linear program was not solved to optimality.)

Since for v = 6,7 the method using the Singer cycle was not capable of beating
the best known constant dimension code we tried the more general approach described
in Section 3 In both cases we improved the cardinality of the best known constant
dimension codes as shown in this small table:

v k number of codewords best known ds = 2d

63 7 T1[18] 4
73 304 294 4

For v = 6 even the original incidence matrix M or M “where G is the identity group
results in only 1395 binary variables and 651 constraints having 9765 nonzero entries.
Using the ILOG CPLEX 11.1.0 solver directly on this problem yields a constant dimen-
sion code of cardinality n = 77 which beats the example of [10.18]] by 6. The best known
upper bound in this case is given by 81, where as the upper bound given by the linear
relaxation is give by 93. Marcus Grassl (private communication) also found codes of
cardinality n = 77 using some heuristics together with the CLIQUER software [16]].

As mentioned in Example [3.1] the original incidence matrix M is quite large. Here
the direct approach has not led to any improvements. Although in general it is difficult
to construct the condensed matrix M for an arbitrary group and larger parameters we
were able to conquer the difficulties for v = 7,k = 3, dg = 4 and some groups. The
group resulting in the code having 304 three-dimensional subspaces of GF(2)7 such
that the intersection of two codewords has dimension at most one was already given in
Example 3.1l We have tried several groups before ending up with this specific group.
More details can be shown using the following diagram:

order 63 order 12

3,43,189 19,289,1161

273 86

2.4 sec 7.2 sec
order 9 order 21 order 6 order 4
15,301,1317 7,129,567 35,565,2301 51,855,3455
282-381 304 93 86-99

27h 1h
order 3 order 7 order 3 order 2
43,903,3951 19,381,1695 47,897,3961 95,1675,685
304-381 304-381 263-381 93-105

identity
127,2667,11811
304-381
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This picture shows part of the subgroup lattice of the automorphism group
PGL(7,2) of the L(GF(2)7). It only shows cyclic groups and in the top row we give
the order of the group. In the second row we give the number of orbits on the points,
lines and planes. In the third row of each entry we give the size [b of a constant dimen-
sion6 code and the best found upper bound wb in the format b — ub. As described in
Section [3| for a given group our problem corresponds to several versions of feasibility
or optimization problems. To obtain the lower bounds we have used the LLL based
algorithm, the coding theoretic motivated heuristic and the ILOG CPLEX solver for in-
teger linear programs. The upper bounds were obtained by the CPLEX solver stopping
the solution process after a reasonable time. Whenever the lower and the upper bound
meet we have written only one number in bold face. In each of these cases we give the
necessary computation time to prove optimality in the forth row.

As we can split orbits if we move to a subgroup we can translate a solution found for
a group G into a solution for a subgroup of G. E.g. for the groups of order smaller than
21 we did not find codes of size 304 directly. This fact enables us to perform a restricted
search in systems corresponding to subgroups by only considering solutions which are
in some sense near to such a translated solution. We have tried this for the subgroups
of the group of order 21 - unfortunately without success.

We would like to remark that solving the linear relaxation can prevent other heuris-
tics from searching for good solutions where no good solutions can exist. E.g. we can
calculate in a second that every code in the case of the third group in the third row can
contain at most 105 codewords. Since we know better examples we can skip calcula-
tions in this group and all groups which do contain this group as a subgroup.

Finally we draw the conclusion that following the approach described in Section[3]
it is indeed possible to construct good constant dimension codes for given minimum
subspace distance. Prescribing the Singer cycle as a subgroup of the automorphism
group has some computational advantages. The resulting codes are quite competitive
for v > 8. The discovered constant dimension codes for v = 6, 7 show that it pays off
to put some effort in the calculation of the condensed matrix M ¢ for other groups.
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Abstract. We describe a simple formalism for generating classes of
quantum circuits that are classically efficiently simulatable and show
that the efficient simulation of Clifford circuits (Gottesman-Knill theo-
rem) and of matchgate circuits (Valiant’s theorem) appear as two special
cases. Viewing these simulatable classes as subsets of the space of all
quantum computations, we may consider minimal extensions that suffice
to regain full quantum computational power, which provides an approach
to exploring the efficacy of quantum over classical computation.

1 Introduction

The characterisation of the possibilities and limitations of quantum computa-
tional power is one of the most interesting issues in quantum information science.
All of the early and best known quantum algorithms [I] that exhibit an expo-
nential time speed-up over any known classical algorithm for the task, utilize
properties of the quantum Fourier transform modulo N. One may then develop
generalisations of these insights, studying Fourier transforms over further abelian
and non-abelian groups and invent associated computational tasks such as the
hidden subgroup problem and various kinds of hidden shift problems. Around
the years of 1997 and 1998 Thomas Beth, with memorable characteristic exu-
berance, was one of the earliest workers in the subject to recognise the potential
possibilities of the abstract formalism of Fourier transforms for novel quantum
algorithms, and take up this line of development which has now become an
important cornerstone in our understanding.

Despite this seminal development it is probably fair to say that apart from
the Fourier transform formalism, no other similarly fruitful quantum algorith-
mic primitive for exponential speed-up has been identified. This motivates a
need for alternative approaches to exploring the efficacy of quantum vs. classi-
cal algorithms. One interesting such approach is the identification and study of
classes of quantum computations that are classically efficiently simulatable i.e.
processes which although quantum, do not offer computational benefit. Indeed
the relation of classical to quantum computation that emerges is intriguingly rich
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and multi-faceted — (sub-) classical computation can be embedded into quan-
tum computation in many inequivalent ways. Given any such class of simulatable
quantum computations we may ask: what kind of added (minimal) ingredient
suffices to restore full quantum computational power? In a sense, any such in-
gredient may be viewed as an “essence” of quantum computational power, albeit
relative to a given substrate of simulatable processes. In this talk we will outline
a formalism for providing simulatable classes of quantum circuits and discuss
two examples — the Gottesman-Knill theorem for Clifford circuits and Valiant’s
theorem for simulation of matchgate circuits. These examples will show that
the added ingredient above can be strikingly trivial, especially if thought of as
a competitor to the oft-quoted blanket attribution of quantum computational
power to the enigmatic phenomenon of entanglement.

2 Classically Simulatable Quantum Computations

We focus on comparing and contrasting two theorems of classical simulation viz.
the Gottesman-Knill theorem for Clifford circuits [I[9] and Valiant’s theorem
[42] for simulation of matchgate circuits. At first sight these appear to be very
different in their content and provenance but we will outline a proof method
that reveals a formal similarity between the two results.

The Gottesman-Knill (GK) theorem arose out of the development of the so-
called stabiliser formalism for the theory of quantum error correction [I]. Let
H denote the 1-qubit Hadamard gate, P the 1-qubit phase gate P = diag(1,1)
and C'Z the 2-qubit controlled—Z gate CZ = diag(1, 1,1, —1). These gates and
arbitrary circuits of them on n qubits are called Clifford operations on n qubits.
Our adopted version (slightly modified from the original, c.f. also [3]) of the GK
theorem is the following.

Theorem 1. Consider any uniform (hence poly sized) quantum circuit family
comprising the gates H, P and CZ (i.e. a Clifford circuit) such that:

(i) the input state is any product state;

(i) the output is a final Z measurement on any single qubit line.

Then the output may be classically efficiently simulated.

More formally our notion of efficient classical simulation is the following: given
a description of the circuit on n qubit lines, the output probabilities may be
classically computed to k digits in poly(n, k) time.

Next we introduce the notion of “matchgate” and Valiant’s classical simula-
tion theorem [4], which arose originally from considerations of counting perfect
matchings in graphs.

A matchgate [42] is defined to be any 2-qubit gate G(A4, B) of the form (in
the computational basis):

p00g

OwzO w X
GAB) = | 120 A:(pq> B:( > (1)

r00s
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where A and B are both in SU(2) or both in U(2) with the same determinant.
Thus the action of G(A, B) amounts to A acting in the even parity subspace
(spanned by |00) and |11)) and B acting in the odd parity subspace (spanned
by [01) and [10)).

Our version of Valiant’s theorem (again slightly different from the original
version) is the following.

Theorem 2. Consider any uniform (hence poly-sized) quantum circuit family
comprising only G(A, B) gates such that:

(i) the G(A, B) gates act on nearest neighbour (n.n.) lines only;

(ii) the input state is any product state;

(#ii) the output is a final measurement in the computational basis on any single
line.

Then the output may be classically efficiently simulated.

Let us now return to the GK theorem and its proof ingredients. The essential
property of the class of gates used, i.e. Clifford gates, is the following [9]: if C is
any n-qubit Clifford operation and P} ®...® P, is any product of Pauli matrices
(i.e. P, = I,X,Y or Z for each i) then the conjugate CT(P, ® ... ® P,)C =
P/ ®...® P! is again a product of Pauli operations. Stated more formally, if P,
is the group generated by all such Pauli products on n qubits then the n-qubit
Clifford group is the normaliser of P,, in the unitary group U(2").

A standard proof (c.f. [I]) of the GK theorem (with a computational basis
input) proceeds by updating the stabiliser description of the state through the
course of the computation and we get a description of the final state in addition
to the output probabilities. We adopt here a different approach [3]. Suppose
(wlog) that the final measurement is on the first line, having outputs 0,1 with
probabilities pg, p1 respectively. Then the difference py — p; is given by the ex-
pectation value of 71 = Z® I ® ... ® I in the final state C |1):

po — p1 = (0| C1Z1C [1ho) (2)

This computation suffices to simulate the output (as also pg + p1 = 1). Now
Z, is clearly a product of Pauli operations so C'Z,C also has the product form
P, ®...® P, for Pauli operations P; (whose identity can be determined in linear
time by an update rule for successive conjugations by the elementary gates in
the circuit). Hence if |thg) = |a1) .. .|a,) is any product state we get

n

po—p1 = [ (anl Py |ax) 3)
k=1

which can clearly be calculated in time O(n) (as a product of n terms of fixed
size) giving an efficient (linear time) simulation of the Clifford circuit.

The essential ingredients of the above proof are the following.
(SIM1): we have a set S, of n-qubit operations such that (o] S 1) can be
computed in poly(n) time for any S € S,, and any allowed input state |1)g);
(For the GK theorem &, is the n-qubit Pauli group P,,.)
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(SIM2): we have a class K,, of unitary operations such that KTSK € S, for all
Ses,and K € K,,.
(For the GK theorem [, is the Clifford group C,,.)

Then if Z; isin S, for all n (or can be expressed in suitably simple terms using
elements of S, c.f. later) then it follows (just as in the above outlined proof)
that circuits of gates from KC,,, with input state |1g) and output measurement
of Z on the first line, can be classically efficiently simulated.

Note that this simulation result, resting on (SIM1) and (SIM2) does not ac-
tually require any special group (or other algebraic) structure on S,, or &C,,. For
example, the fact that P, is a group is not needed at all in our proof of the
GK theorem in contrast to the usual proof resting on the stabiliser formalism,
depending heavily on the subgroup structure of P,,.

Turning now to matchgates we will show that Valiant’s theorem can be un-
derstood as just another example of the above formalism with a suitably clever
choice of S,, and IC,,. For n qubits we introduce the 2n Pauli product operators
(omitting tensor product symbols ® throughout):

ca=X1...1 c3=ZXI1...1 - cop1=2...ZX1...1 (4)
co=YI...1 ca=2YI1...1 -+ cop =2...2Y1...1

where X and Y are in the k*" slot for cor_1 and cop, and k ranges from 1 to n.
For S,, we take the linear span of ci,...,co, which is a 2n-dimensional vector
space (in contrast to the group P,). Since each ¢; is a product operator and a
general vector v € §,, is a linear combination of only 2n of them, it is clear that
(¢o| v |¢o) is poly(n)-time computable if |1)o) is a product state i.e. (SIM1) is
satisfied.

Next we can verify by straightforward direct calculation that if U is any n.n.
G(A, B) gate then UchU € S, for all j so UwU € S, for any v € S, i.e.
property (SIM2) is satisfied. More explicitly note that if U is a n.n. G(A, B)
gate, it applies to two consecutive qubit lines so (from eq. ({@)) the part of ¢,
that it “sees” can only be one of

o1 =27 ay=ZX a3=2Y ay=XI a5;=YI or ag=1I. (5)

Then a straightforward calculation with 4 by 4 matrices shows that for each 4,
G(A, B)Ta;G(A, B) always returns a linear combination of allowable a;’s and
property (SIM2) follows immediately.

It is instructive to note that if we attempt to apply a G(A, B) gate on not
nearest-neighbour qubit lines then in addition to the six terms in eq. (@) we
can get a further possibility, namely a; = ZI on the chosen two lines. But now
we can check that G(A, B)'a;G(A, B) does not generally lie in the span of the
allowed Pauli products at those lines, and property (SIM2) is violated. This
give a way of understanding the curious n.n. requirement for G(A, B) actions
in theorem 2 which has no analogue in the GK theorem (as P, is defined by a
uniformly local product requirement).

With properties (SIM1) and (SIM2) we can say that if M is the total operation
of any n.n. matchgate circuit on n lines then (v MTDM |3po) is poly(n)-time
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computable for any D € §,. To complete our simulation theorem we want to
set D = Z, =1...1 ZI...I (i.e. Z on the k*® line) to obtain py — p; for a
measurement on the k' line. In the GK theorem with S,, = P,, we had Zx € P,
directly. In the present case we do not have Z € S,, but looking at eq. (@) we
see that Z; = —icico and generally Zy = —icok_1cor. Then, for example,

MTZ\M = —iMTeyeoM = —i(MTe; M)(MTea M) (6)

and each bracket in the last expression is a linear combination of c¢;’s. Thus
po—p1 = (Yo| MTZ1 M |1hg) has the form —i > ij @ibj (1ol cicj |1ho). Since the ¢;’s
are product operators, so are the O(n?) product terms c;c; in the final sum.
Hence po — p1 is again poly(n)-time computable but now we have O(n?) terms
instead of the previous O(n) terms in the sum. This completes a proof outline
of Valiant’s theorem 2

3 Extensions of Simulatable Circuits

We may now view Clifford circuits and matchgate circuits as two “islands” of
quantum processes in the space of all quantum computations, that offer no com-
putational time benefit over classical computations. As such, it is interesting to
try to characterise their relationship to the whole and one approach is to consider
what (minimal) extra ingredient suffices to expand their computational power
to regain full universal efficient quantum computation.

In the case of Clifford circuits it is well known (e.g. see [I]) that the inclusion
of the phase gate /P = diag(1,e"/*) suffices, and more generally, (using a
result of Shi [I0], noting that CNOT is a Clifford operation), the inclusion of
essentially any single extra non-trivial 1-qubit gate will suffice.

For the case of matchgate circuits we have the following intriguing result.

Theorem 3. Let C,, be any uniform family of quantum circuits with output
given by a Z basis measurement on the first line. Then C,, may be simulated by
a circuit of G(A, B) gates acting on n.n. or next n.n. lines only (i.e. on line
pairs at most distance 2 apart) with at most a constant factor increase in the
size of the circuit.

A proof of this theorem may be found in [2] and here we just make a few
remarks. Comparing theorems 2] and [3] we see that the gap between classical and
full quantum computational power can be bridged by a very modest use of a
seemingly innocuous resource viz. the ability of matchgates to act on next n.n. —
instead of just n.n. — qubit lines. Equivalently this may be characterised by use of
the SW AP operation (on n.n. lines) in a very constrained context where ladders
of consecutive SW APs (which would allow 2-qubit gates to act on arbitrarily
distant lines) are not even allowed. From this perspective, the power of quantum
(over classical) computation is attributable to the mere inclusion of such isolated
single SW AP gates. The result becomes perhaps even more striking if we note
that SWAP itself is very close to being expressible in the allowed G(A, B)
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form. Indeed SWAP = G(I,X) and fails only through a mere minus sign in
det X = —det I. Thus if we drop the detA = detB condition in eq. (), then
the resulting G(A, B) gates acting on n.n. lines become efficiently universal for
quantum computation.

Is it conceivable that the passage from n.n. to next-n.n. use of G(A, B) gates
may be achieved while maintaining classical simulatability? We may argue on
formal complexity theoretic grounds that this is highly implausible. Indeed it
is shown in [2] that the classical complexity classes NP and PP (cf. [7]) would
then become classically poly-time decideable i.e. we would get P=NP=PP (as
well as P=BQP). Thus an extra supra-classical computational power must be
associated to the single distance extension of the range of n.n. 2-qubit G(A4, B)
gates in general matchgate circuits, if these classical computational complexity
classes are to be unequal.

4 Concluding Remarks

From the viewpoint of (SIM1) and (SIM2) we see a formal similarity between the
GK theorem and Valiant’s theorem although these results arose historically from
very different considerations. This suggests that we might be able to construct
further interesting classes of classically simulatable circuits by simply taking
other choices of S,, and identifying a suitable associated K,,. However “interest-
ing” pairs (Sy,, K,,) appear to be difficult to invent — the known examples arising
as outcomes of some prior elaborate underlying mathematical structures. In the
GK case we have the identification of the Clifford group via a lengthy argument
with group theoretic ingredients (see e.g. appendix in [I1]) applied to the Pauli
group P, which is a well known structure in the subject.

However in the case of Valiant’s theorem, how might we initially come upon
this result, and guess the choice for S, that we used (i.e. eq. @) and its linear
span)!? Actually the operators in eq. @) are well known in physics — they com-
prise the so-called Jordan-Wigner representation [8] that appears in the theory
of non-interacting fermions. The connection between Valiant’s theorem and sim-
ulation of free fermions was recognised by Knill [5] and Terhal and DiVincenzo
[6] and our proof of Valiant’s theorem above is a re-writing of this connection.
A more formal mathematical treatment (albeit without reference to fermions)
based on abstract properties of the mathematical structure of Clifford algebras
is given in [2] which also clarifies the appearance of matchgates as normalisers of
the linear part of the Clifford algebra, leading to property (SIM2). We will not
elaborate here on these further ingredients (detailed in [2]) except to point out
that again here, we have a significant underlying theory leading to the choice
of §,, and the identification of its associated normalisers KC,,. Perhaps an intu-
itive signal feature of such an underlying theory is some construction that could
potentially produce an exponentially large structure but surprisingly remains
only polynomially complex. In the case of the Pauli group P,, conjugation by
arbitrary V' € U(2™) can generate general n-qubit matrices for which the calcu-
lation of the expectation value in eq. () becomes exponentially inefficient. But
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the special case of V' being Clifford guarantees a polynomial simplicity via the
preserved product structure. In the case of the ¢;’s of eq. (@), conjugation by an
arbitrary V' € U(2") leads to a general element of the full Clifford algebra gen-
erated by the the ¢;’s [2] — a space of exponential dimension 22" — but again the
special case of n.n. matchgates (associated to a theory of quadratic hamiltonians
[2]) guarantees that the conjugates remain in the polynomially small subspace
of linear elements of the full Clifford algebra. It is an interesting open problem
to exhibit further examples of such simplifications and of our formalism (SIM1),
(SIM2), that may already exist within the literature of the theory of some yet
more general kind of algebraic structure.
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Abstract. The paper gives a short introduction to mutually unbiased
bases and the Welch bounds and demonstrates that the latter is a good
technical tool to explore the former. In particular, a criterion for a system
of vectors to satisfy the Welch bounds with equality is given and applied
for the case of MUBs. This yields a necessary and sufficient condition on
a set of orthonormal bases to form a complete system of MUBs.

This condition takes an especially elegant form in the case of homoge-
neous systems of MUBs. We express some known constructions of MUBs
in this form. Also it is shown how recently obtained results binding MUBs
and some combinatorial structures (such as perfect nonlinear functions
and relative difference sets) naturally follow from this criterion.

Some directions for proving non-existence results are sketched as well.

1 Mutually Unbiased Bases

The current research originated in the problem of constructing a complete set
of mutually unbiased bases and is inspired mostly by [22].

A set of mutually unbiased bases (MUBs) in the Hilbert space C™ is defined as
a set of orthonormal bases { By, B, ..., B} of the space such that the absolute
value of a scalar product |{z]y)| is equal to 1n for any two vectors © € B;,
y € B; with 7 # j. For the sake of brevity we will further call the absolute value
of a scalar product of two vectors as the angle between these vectors. We will
often group vectors of a basis into a matrix and say that two unitary matrices
are mutually unbiased iff the bases obtained from their columns are. Bases with
such properties were first observed by Schwinger in [30]. The name of mutually
unbiased bases is due to Fields and Wootters [34].

The applications of MUBs include quantum state determination [21134], quan-
tum cryptography (the protocol BB84 due to Bennet and Brassard [5] is a classical
example of such a usage), the Mean King’s problem [1] and Wigner functions [35].
A good source of an up-to-date information on MUBs can be found on [13].

Clearly, if n = 1 then any number of unit vectors (in fact, scalars) gives a
set of MUBs. This result does not seem very useful, so we will further assume
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project No Y2-ZP14-100.
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the dimension of the space n is at least 2. In this case it can be proved that the
number of bases in any set of MUBs in C" doesn’t exceed n + 1 (see Theorem Bl
later in the text). A set of bases that achieves this bound is called a complete
set of MUBs. An interesting question is whether such a set exists for any given
dimension n. The answer is positive if n is a prime power [21/34]. The corre-
sponding constructions are listed in section [ of this paper. In all other cases
(even for n = 6) the question is still open, despite a considerable effort spent on
solving this problem (see, e.g., []).

The search for complete systems of MUBs is complicated because of the num-
ber of bases we should find and because of the non-obviousness of the value of
the angle \/1“ Using the Welch bounds (described in the next section) we give
a sufficient and necessary condition that uses solely orthogonality of vectors.
Clearly, it is a much more studied and intuitive relation.

This is not the first attempt to substitute the angle \/1“ by zero. An alternative

approach appears in the classical paper [34]:

Proposition 1. Consider the operation that maps a state |z) € C™ to the matrix
Y, = |z){z| — I/n. Then |{z|y)| = \}n if and only if matrices Y, and Y, are
orthogonal with respect to the trace inner product: Tr(Y,Y,) = 0.

In particular, applications of MUBs in quantum state tomography are based on
this observation.

Our approach is slightly different. Using the collection of n + 1 orthonormal
bases in C", pretending to be mutually unbiased, we build n flat (with all entries
having the same absolute value) vectors, each in cv. Next, from each pair of
these vectors we obtain a new vector from the same space. We prove that the
bases of the original collection are MUBs if and only if the latter vectors are
pairwise orthogonal. It is not a problem to find (3) orthogonal flat vectors in

(C"Q, but, in general, they won’t be decomposable back to pairs.

Moreover, if we restrict our attention to homogeneous systems of MUBs (see
Section [0 for the definition), it is possible to reduce the criterion to only two
matrices from C" and orthogonality conditions obtained in a similar fashion. In
order to show the usability of our result we show how it sheds light on the known
constructions of complete sets of MUBs. In particular, we give a bit easier proofs
that these constructions do result in complete sets of MUBs.

We also show how this approach naturally leads to some applications of com-
binatorial structures to MUBs that were obtained recently. In particular, we
extend the correspondence between planar functions and splitting semiregular
relative difference sets to the case of non-splitting ones.

2 Welch Bounds and Crosscorrelation

Welch bounds are the inequalities from the following theorem:

Theorem 2. For any finite sequence {x;} of vectors in Hilbert space C™ and
any integer k > 1 the following inequality holds:
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The proof will be given in Section [, but for now let us note that these inequalities
were first derived (in the case of all vectors having the same norm) by Welch

in [33]. It is worth to become acquainted with his motivation.
In order to do this we should define sequences with low correlation. For a
systematic treatment of the topic see [I§]. Let u and v be complex periodic

sequences of equal period n. Usually the sequences are defined as u; = wy’ with

a; from Z,. (wq is a primitive g-th power root of unity: w, = 62;”, Zq is the ring
of integers modulo ¢). The binary case (with ¢ = 2) is the most common. The
(periodic) correlation of u and v is defined as (where L stands for the left cyclic
shift function)

Ouw(T) = (L7 (u)v) = Zuwpﬁ.

The correlation of a sequence with itself is called its autocorrelation 6,(7) =
(L7 (u)|u). The correlation of two shift-distinct sequences is usually called cross-
correlation.

Informally, the correlation of binary sequences characterizes the number of
places two sequences coincide minus the number of places they differ. For random
sequences magnitude of this value is small, so it can be used as a measure of the
pseudorandomness of a sequence. The correlation is called ideal if it is as small
as possible (0 or £1). It is considered low, if it is O(y/n) (an expected value for
random sequences). For example, m-sequences (the maximal length sequences
generated by a linear feedback shift register (LFSR)) have ideal autocorrelation,
since for them 6(7) = —1 for any 7 # 0 (mod n). This, among other properties,
explains why they are used in cryptography (as a main building block of nearly
every stream cipher) and electronic engineering (e.g., in radars).

Families of sequences with low crosscorrelation are also well-studied. A nice
property of these sequences is that they can be transmitted through the same
channel simultaneously without mutual disturbance. By the time Welch was
writing his paper there were some good families of sequences with low auto- and
cross-correlation and he got interested in obtaining upper bounds on the number
of sequences in a family.

For example, one classical family of sequences was proposed by Gold in [15].
For any integer k he constructed a family of 2¥ 4+ 1 binary sequences of period
2% — 1 and correlation between any two of them takes only three possible values:
—1,—(2%+D/2 1 1) and 2-+1)/2 1,

Similarity of this family and a complete family of MUBs is apparent. Both
are built of vectors from C™, vectors are joined in blocks of size n, the number of
blocks is approximately the same and the ratios of possible inner products and
norms of vectors also almost agree. So, an attempt to apply Welch bounds to
the problem of MUBs seems quite reasonable.
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Even more, it turns out that Alltop in his work [2] of 1980 (i.e., one year before
the work [2I] of Ivanovié¢) for any prime p > 5 gave a set of p sequences with
period p and elements with absolute value 1p, such that the crosscorrelation is

given by
1,u=vand 7 =0;
10 (T)] = 0,u#vand T=0;
\}p,T;ﬁO.

Clearly, these sequences with different shifts and the standard basis give a com-
plete set of MUBSs in CP. This result was generalized to prime power dimensions
in [23].

3 Link between MUBs and the Welch Bounds

In our first application of the Welch bounds to MUBs we can apply the original
approach of Welch in the new settings. It is easy to check that a union of or-
thonormal bases satisfy the Welch bound for k£ = 1 (it can be done either directly
using () or using Theorem [ further in the text). So, we should use k = 2.

Theorem 3. If n > 2 then the maximal number of mutually unbiased bases in
C"™ does not exceed n + 1.

Proof. Suppose we have a system of n + 2 MUBs. Join all vectors of the system
into one big sequence {x;} of size n(n + 2). Let us fix £ = 2 and calculate the
left hand side of (). We have n(n + 2) vectors, each giving the scalar product 1
with itself and n(n + 1) scalar products of absolute value \/1" with vectors from
other bases. Summing up, we have:

("42'1) ;|<xi|axj>|4 = n(n2+ ! {n("JrQ) (1 tm 1) 7112)]

n(n+1)(n+2)(2n+1)
N .

For the right hand side we have:

(Z@”mz) = n2(n+2)?> n(n + 1)(n—2|—2)(2n+ 1)7

in a contradiction with the Welch bound for k£ = 2. O

Originally it was proved in [34] using the result of Proposition[Il

If we reduce the number of MUBs from n+2 to n+1 we don’t get an apparent
contradiction. However, even in this case the Welch bounds prove themselves to
be useful.
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Theorem 4. Let {B;} be a set of n+ 1 orthonormal bases in an n-dimensional
Hilbert space and X be the union of these bases (that is the sequence of vectors,
each of them appearing in the sequence the same number of times it appears in
the bases). Then X satisfies the Welch bound for k = 2 with equality if and only
if {B;} form a complete system of MUBs.

Proof. If {B;} is a complete system of MUBs and X = {z;} is the union of its
bases, then calculations similar to ones in the proof of Theorem [3 show

( )Z| (z]a)|* = (n+1) {n(n+1) (1+n2.7112)] —n2(n+ 1)
and

2
(Z(mi|mi>2> =n?(n+1)%
K3

And vice versa, suppose X, being a union of orthonormal bases, attains the
Welch bound for k = 2. Then, |(z|z)|* = 1 for each z in X, |(z|y)|* = 0 for two
different vectors of the same basis, and by the inequality between square and
arithmetic means we get:

S Lzl (Zmy >=i

rEB; rEB;

for any vector y of unit length. To attain the Welch bound, this inequality must
actually be an equality, which is achieved only if |(z|y)|* has the same value for
all vectors z from B;. This means that bases {B;} form a complete system of
MUBs. a

Systems of vectors attaining the Welch bounds have been investigated before. A
system of unit-norm vectors from C" attaining the Welch bounds for all £ < ¢
is called a complex projective t-design. This is a Chebyshev-type averaging set
on the n-dimensional complex unit sphere CS™ 1, in the sense that the integral
of every polynomial of degree < t is equal to the average of its values on the
vectors from the ¢-design. See [22] for more details.

Analysis of links between complex projective 2-designs and MUBs was initi-
ated in Zauner’s dissertation [36] and was continued in the work by Klappenecker
and Rotteler [22]. In particular, the ‘if” part of Theorem Ml is due to them. The
‘only if” part seems first to appear later, in [28].

We give a criterion for attaining the Welch bounds in the next section.

4 Criterion for Attaining the Welch Bounds

Let us at first define the Hadamard product of two matrices. Let A = (a;;)
and B = (b;;) be two matrices of equal sizes. The Hadamard product (see, for
example, chapter 7 of [19]) is the matrix of the same size (denoted by A o B)
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with its (4, j)-entry equal to a;;b;;. In other words, multiplication is performed
component-wise. The k-th Hadamard power of the matrix A is again the matrix
of the same size (denoted by A¥)) with its (i, j)-entry equal to af;.

Additionally, we shall use notation A' for the adjoint matrix (complex conju-
gated and transposed) and the term self-adjoint for matrices A satisfying AT = A
(also called Hermitian).

We will at first give a proof of the Welch bounds and then extract the equality
criterion from the proof.

Proof (of Theorem[2). Let us construct the Gram matrix G = (a;;) with a;; =
(zi|lz;) and consider its k-th Hadamard power G (with k being a positive
integer). The square of its Euclidean norm (see chapter 5 of [19], also known as
Frobenius norm and Schur norm) is defined by

(16%915)" = 3 ik 2* = @)

Unitary operators, applied both from the left and the right, do not change the
Euclidean norm of a matrix. Any self-adjoint matrix can be transformed into a
diagonal matrix with real entries (its eigenvalues) on the diagonal by a unitary
transformation, and G®) is a self-adjoint matrix, hence

= ) N> (3)
A€o (GR))

here o is the spectrum (the multiset of the eigenvalues of a matrix). By the
inequality between square and arithmetic means, we have (let us remind that the
rank of a self-adjoint matrix is equal to the number of its non-zero eigenvalues):

2 rank(lG(k))<TrG(k))2 = (n+]l;—1) <Z<$i|$i>k> . (4)

k i
The last estimation on the rank of G**) we will prove later. O

Theorem 5. Let B be a matrix and X C C" be the sequence of its columns.
Let wi,ws, ..., w, be the rows of the matriz. Then X attains the Welch bound
for a fixed k if and only if all vectors from

k
W:{\/<k . )wY“l)owg’“?)o...ow;‘%)kieNo,k1+.--+kn=k}
1y-+-yhn

are of equal length and pairwise orthogonal.

In other words, each vector of W is a Hadamard product of a k-multiset of rows
of B with a coefficient that is the square root of the multinomial coefficient of

the multiset
k B k!
ki,... kn)  kilko!-- -k,
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Proof. At first, let us note that matrix G in (@) is equal to BT B. So (if each w;
is treated as a row vector):

G = w{wl + w;wg Wl wy,.

By the formula for a power of a sum, we obtain

¢ = 3 k(klkkn) (w§’“>o...ow5;cn>)T(w§’“>o...ow;kn>).

ko=

In other words, G**) = CTC, where the rows of C' are exactly the vectors from
W. This gives the bound on the rank of G(*) used in (@), because the number
of k-multisets of an n-set equals ("+£_1) (see, e.g., Section 1.2 of [29]).

By observing the inequality between (@) and (), we see that X satisfies the
Welch bound for a fixed k with equality if and only if G® has ("*7~') equal
non-zero eigenvalues (all other eigenvalues are automatically zeros due to the
rank observations).

It is a well-known fact that for any matrices P and ) the set of non-zero
eigenvalues of matrices PQ and QP are equal whenever these two products
are defined (see Section 1.3 of [19]). Hence, CCT have ("*7~') equal non-zero
eigenvalues, and because it is a self-adjoint matrix of the same size it is a scalar
multiple of the identity matrix. And the latter is equivalent to the requirement
on the set W. O

We haven’t hitherto seen the pair of Theorems [2] and [{] appearing in such a
general form, however all ideas involved in the proof have already appeared in the
proofs of other results. As we have already said, Welch was the first who derived
the bounds () in the case when all vectors have unit norm and k is arbitrary. It
was done in [33]. The variant of Theorem [l with k = 1 and all vectors of equal
length, seems first to appear in [24]. Our proof is a generalization of an elegant
proof found in [32]. In the latter paper the Welch bounds are stated in the case
of vectors of different length, but it deals with the case of k = 1 only.

5 Application of the Criterion to MUBs

At first let us state the following easy consequence of Theorem

Corollary 6. Let B be a matriz and X C C™ be the sequence of its columns.
Let wy,wa, ..., w, be the rows of the matrix. Then X satisfy the Welch bound
for k = 2 with equality if and only if all vectors from W = {wZ@)} U {v2w; ow |
1<i<j<n} are of equal length and pairwise orthogonal.

Suppose we have a complete system of MUBs: {By, By, ..., B, }. We can always
represent them in the first basis By, thus we can assume that the first basis is the
standard basis (the identity matrix). Then the matrices representing all other

bases have all their entries equal by the absolute value to \/1“
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A matrix with complex entries and with all entries having the same absolute
value is called a flat matrix. If it is additionally unitary (or a scalar multiple
of a unitary), it is called a complex Hadamard matriz. It is common to rescale
flat matrices in such a way that each its element has absolute value 1. We will
usually assume that. In the case of an n x n complex Hadamard matrix it is
sometimes more convenient to assume each element having absolute value \/1”,
sometimes 1. According to the situation we will use both assumptions, it will be
usually clear from the context what is meant.

Complex Hadamard matrix is a generalization of classical Hadamard matrix
that satisfies the same requirements, but with all entries real (i.e., 1) (see, for
example, Section 1.9 of [3]). We will further use term Hadamard matrix or just
Hadamard to denote complex Hadamard matrices.

Two Hadamard matrices are called equivalent if one can be got from the other
using row and column multiplications by a scalar and its permutations. Some
classes of equivalent Hadamards are classified. See [31] for more details.

A system of Hadamards such that any two are mutually unbiased is called a
system of mutually unbiased Hadamards or MUHs for short. The following result
is obvious

Proposition 7. A complete system of MUBs exists in space C™ if and only if
there is a system of n MUHs in the same space.

A system of n MUHs in C" is called a complete system of MUHs. We will turn
to the investigation of complete systems of MUHs in the remaining part of the
paper.

Now we are able to prove the following theorem:

Theorem 8. Let {B;} (i =1,2...,n) be a set of n Hadamards in C" and B
be a concatenation of these matrices (i.e. a n* x n-matriz having as columns all
columns appearing in {B;}). Then {B;} form a complete set of MUHs if and
only if all vectors from W' = {w;ow; | 1 <i<j <n} are pairwise orthogonal,
where {w;} are the rows of B.

Proof. Let us denote the n x n identity matrix by By. By Theorem @, we see
that the set {Byg, Bi,..., By} is a complete set of MUBs if and only if the set
of columns of all these matrices attains the Welch bound for £ = 2. Now from
Corollary [0] it follows that it only remains to show that vectors from W, as it
was defined in Corollary Bl are of equal length and orthogonal if vectors of W’
are orthogonal.

If a vector from W is multiplied by itself using the Hadamard product, the
result has one 1 and all other entries equal to 0 in the part corresponding to By,
and all entries in other parts by the absolute value are equal to }L Hence, the

length of the vector is \/1 +n2 L =./2.

n2
If two distinct vectors are multiplied, the result has only zeroes in the first

part, and its length is \/ n2 L, = 1. We see that all vectors from W have the

’I’L2
same length.
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Moreover, the part of By contributes zero to the inner product of 2 distinct
vectors of W, hence vectors of W are orthogonal if and only if the corresponding
vectors of W' are. O

Let us restate the last theorem. Suppose B is a flat n X n-matrix. Construct
the weighted graph K (B) as follows. Its vertices are all multisets of size 2 from
{1,...,n}. Semantically a vertex {i,;} represents the Hadamard product of the
i-th and the j-th row of B. The weight of an edge is the inner product of
the vertices it joins. (Of course, thus defined, the weight depends on the order
of the vertices, but let us fix a direction of each edge, say lexicographical).
Then Theorem B can be restated by saying that Hadamards Bi,..., B, form
a set of MUHs in C” if and only if the sum of weights of each edge in all of
K(By),...,K(B,) equals 0. In fact, there is no need to consider edges between
vertices that have an element in common, since they will be orthogonal.

It does not seem that this restatement makes the problem much easier com-
paring to the initial formulation. However, careful examination of the possible
configurations of weights that can be achieved in K (B) may shed some light on
the problem. In the next section we consider a special case of systems of MUHs
for which Theorem [§ yields a considerable simplification.

6 Homogeneous Systems of MUBs

Suppose we have a flat n x n-matrix A = (a;,;) and an Hadamard matrix H =
(hi,;) of the same dimensions. Consider the following system of Hadamards (it’s
assumed that each element of A and H has absolute value 1)

(i) = \}nae,rhe,k (5)
with r being a matrix index, k& being a column index and ¢ being a row index
(ryk,£ € {1,...,n}). In other words, the i-th matrix is given by diag(v;)H, where
v; is the i-th column of A. We will call such a set of Hadamards (in the case it
forms a set of MUHs) a homogeneous system of MUHs, or a homogeneous system
of MUBs if the identity matrix is appended. The name is borrowed from [4].

From Theorem [ it follows that the system from () forms a system of MUHs
if and only if

1
(we, © W, |weg 0 we,) = n > " as, rhe, ko hey kG0 hey k00 he, g =
rk

1
= gazl,raerz,raeg,raur E hey khes khes khey i | =0
r k

for all El,fg,gg and £4 such that {fl,gz} 7’5 {£3,€4}.

Let us define the L-graph (denoted L(A)) of a flat matrix A as follows. It is a
simple graph with the same set of vertices as K (A). Two vertices are adjacent
if and only if the corresponding vectors are orthogonal. The previous identity
leads to the following observation:
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Proposition 9. The homogeneous system given by ([A) is a complete system of
MUHs if and only if the graphs L(A) and L(H) together cover the complete
graph.

If matrices A and H satisfy the conditions of Proposition[d and A’ and H’ are
such matrices that L(A) is a subgraph of L(A’) and the same holds for L(H)
and L(H'), then A" and H' also give rise to a complete system of MUHs via (&).
Hence, without loss of generality we may consider only matrices with maximal
L-graphs. We will call them L-maximal flat or Hadamard matrices, respectively.
What are they? We can say little on the subject at the moment, it is a topic for
a future research.

Problem 10. Describe L-maximal flat and Hadamard matrices and the corre-
sponding graphs.

An answer to this question would possibly allow a systematization of all complete
homogeneous systems of MUBs. Anyway, it is already clear that L-maximal flat
matrices cover L-maximal Hadamard matrices (because the latter is a special
case of the former).

There is an important class of L-maximal Hadamard matrices. It is a very
common example of Hadamard matrices and it is used in all known constructions
of maximal families of MUBs. These are Fourier matrices which we will now
introduce.

7 Fourier Matrices

Fourier matrix is the most popular type of Hadamard matrices. It is called so
because it performs the Fourier transform of a finite Abelian group. Fourier
transform is widely used in many areas of mathematics, physics and computer
science. However, here we will be mostly interested in one simple property of
Fourier matrices. Namely, the rows of the Fourier matrix of a group G with
the Hadamard product operation form a group isomorphic to the group G (see
later).

Let us take an Abelian group G = Zg, X Zg, X - - X Zg,, of ordern = didz - - - dpm, -
By the structure theorem for finite Abelian groups, each finite Abelian group is
isomorphic to a group of this form (see, e.g., [I7]).

Later on we will be also interested in the group G' = Ry, x Ry, x -+ x Ry, ,
where R, is the group of real numbers modulo a with the addition operation.
Note that G1 = G5 does not imply Gy = Gs. Also, the group G is a subgroup of
G. In addition to that we will use notation G* for the set of non-zero elements
of G, and G* for the set of elements of G with at least one component being a
non-zero integer.

The Fourier transform usually is defined via the dual group which is formed
of all the characters of the group. A character of an Abelian group is its morphism
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to the multiplicative group of unit-modulus complex number. It is possible to
establish an isomorphism from G to G (the dual group) by

m .
27

Xa(b) =exp()