

Lecture Notes in Computer Science 5393
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jacques Calmet Willi Geiselmann
Jörn Müller-Quade (Eds.)

Mathematical Methods
in Computer Science

Essays in Memory of Thomas Beth

13

Volume Editors

Jacques Calmet
Willi Geiselmann
Jörn Müller-Quade
Universität Karlsruhe
Institut für Algorithmen und Kognitive Systeme
76128 Karlsruhe, Germany
E-mail: {calmet,geiselma,muellerq}@ira.uka.de

The illustration appearing on the cover of this book is the work of Daniel Rozenberg
(DADARA).

Library of Congress Control Number: 2008940842

CR Subject Classification (1998): E.3, J.2, F.2, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-89993-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89993-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12585199 06/3180 5 4 3 2 1 0

Preface

The conference Mathematical Methods in Computer Science (MMICS) was held
in the memory of Thomas Beth during December 17–19 in Karlsruhe. The con-
ference was meant to reflect the many interests of Thomas Beth. Even though
these interests might seem diverse the mathematical methods employed and es-
pecially algebra as a language were the common denominator of all his scientific
achievements. The 12 contributed talks reaching from t-designs to integrated
circuits were selected from 30 submissions from 14 countries.

The contributed talks were complemented by three invited talks. Teo Mora
gave a talk on “Decoding Cyclic Codes: The Cooper Philosophy” embracing the
areas of coding theory and symbolic computation. These areas were especially
appreciated by Thomas Beth, because they combine algebra and algorithmics.
Richard Jozsa lectured about “Embedding Classical into Quantum Computa-
tion” in the area of quantum information. Quantum information was a focus
of research of Tomas Beth since 1993 when he co-organized one of the ear-
liest workshops on quantum cryptography in Dagstuhl. Quantum information
became his passion in 1994 when the connection between the Fourier transfor-
mation and breaking the RSA crypto system became apparent via Shor’s algo-
rithm, which can factor integers in polynomial time on a quantum computer.
The Fourier transform and cryptography were topics that played an important
role in Thomas Beth’s research and this connection, once again, justified his
broad view on computer science.

We were especially delighted by the very personal talk from Fred Piper, a
former colleague of Thomas Beth from the time he spent at Royal Holloway
College. His talk was about “Zeros and Ones” and his abstract summarizes the
scope of the conference better than we can do:

Tom was a personal friend as well as being a colleague and collaborator.
He was interdisciplinary in the truest sense of the word with expertise in
computer science, mathematics and physics. In this short talk I will look
at those areas where our personal interests overlapped. These began with
finite projective planes, generalised on to block designs and then changed
(from pure mathematics) to coding theory and cryptography.The talk will
be historical with little technical detail but, using zeros and ones as the
theme, will try to show that the path we followed was ‘natural’.

Thomas Beth would have enjoyed this conference. His legacy should support us
in our research projects and remind us to never forget the pleasure of intellectual
work.

October 2008 Jacques Calmet
Willi Geiselmann

Jörn Müller-Quade

In Memoriam

Prof. Dr.-Ing. habil. Dr. rer. nat. Thomas Beth, professor and long-standing
spokesman of the Institut für Algorithmen und Kognitive Systeme (IAKS), was
born November 16, 1949 in Hannover. He studied mathematics, physics, and
medicine at the Universität Göttingen and received his Dr. rer. nat. in Mathe-
matics from the Universität Erlangen-Nürnberg in 1978 after four years of em-
ployment as a research associate.

After receiving the degree of Dr. Ing. habil. in the area of informatics in 1984
from the same university he was appointed Professor of Computer Science at
the University of London and head of the Department of Computer Science and
Statistics at the Royal Holloway College, University of London. There he created
the research group for cryptography.

In 1985 he took a Chair of Informatics at the Universität Karlsruhe (TH)
and, together with two colleagues, co-founded the Institut für Algorithmen und
Kognitive Systeme, which he has represented as a spokesman ever since.

The scientific achievements of Prof. Beth were aimed at understanding algo-
rithmic structures in larger systems or applications. This line of research, which
started with his algebraic explanation of the general Fourier transform, was con-
tinued at his institute, becoming the groundwork in modern signal and image
processing. Automated tools for the decomposition of signal transforms were
one result of his research that yielded efficient algorithms for different applica-
tions. New methods for medical image processing were based on these methods
and the algebraic models for signal transforms. Professor Beth recognized very
early the importance of the wavelet transform for data compression and pattern

VIII In Memoriam

classification. This research was guided by the general idea to use mathematical
techniques to develop solutions for a broad spectrum of tasks in signal pro-
cessing and automatically realize these in very highly integrated circuits. This
homogeneous development process avoids inefficiencies and design errors to a
large extent.

Cryptology was another focus in the work of Prof. Beth, where he followed
an analogous approach. As in his other work he kept an eye on the applicabil-
ity of his methods, which is reflected by his work in the European Institute of
System Security (E.I.S.S.) that he founded in 1988 and headed since then. In
his research in cryptology he successfully applied methods from the mathemat-
ical areas of combinatorics and algebra. In 1982 he organized an international
cryptology conference at Castle Feuerstein, from which the renowned series of
EUROCRYPT conferences emerged.

With this background Thomas Beth was early on attracted by the newly
emerging field of quantum computing. This area linking informatics, mathemat-
ics and physics appealed to him, not only as a researcher, but also due to the im-
plications quantum computing has on cryptology. Encryption mechanisms which
are classically considered to be secure become insecure with respect to techniques
from quantum computing.

Thomas Beth became a pioneer of quantum computing on the national level
as well as internationally. His activities led to the first priority program of the
Deutsche Forschungsgemeinschaft and to the first European funding program in
this area. In Germany he headed the first and largest research group on quantum
computing in informatics.

In the Faculty for Informatics in Karlsruhe he was one of the initiators of the
new scientific field of anthropomatics. This young area uses methods and models
from informatics to describe the interaction of humans with their environment
to supply solutions which are well adapted for individual requirements.

Teaching and research were inseparable for Prof. Beth. Passing on his knowl-
edge was of great concern to him and he kept up a scientific dialogue at all levels:
during lectures, at his institute, in the faculty and at national and international
conferences. Many of his pupils are now in high positions in science and industry.

In spite of his severe illness he was actively involved in designing the future of
informatics. Unfortunately, he could pursue this task for a quarter of a century
only. He died on August 17, 2005.

Organization

MMICS 2008 was organized by the Institut für Algorithmen und Kognitive Sys-
teme, Universität Karlsruhe, Germany.

Organizers

Jacques Calmet Universität Karlsruhe, Germany
Willi Geiselmann Universität Karlsruhe, Germany
Jörn Müller-Quade Universität Karlsruhe, Germany

Program Committee

Jörn Müller-Quade Universität Karlsruhe, Germany (Program
Chair)

Jacques Calmet Universität Karlsruhe, Germany
Reiner Creutzburg Brandenburg University of Applied Sciences,

Germany
Willi Geiselmann Universität Karlsruhe, Germany
Dieter Gollmann Technische Universität Hamburg-Harburg,

Germany
Maŕıa Isabel González Vasco Universidad Rey Juan Carlos, Madrid, Spain
Markus Grassl Österreichische Akademie der Wissenschaften,

Austria
Dominik Janzing Max Planck Institute for Biological

Cybernetics, Tübingen, Germany
Dieter Jungnickel Universität Augsburg, Germany
Andreas Klappenecker Texas A&M University
Wolfgang Mathis Universität Hannover, Germany
Harald Niederreiter National University of Singapore
Markus Püschel Carnegie Mellon University, USA
Rainer Steinwandt Florida Atlantic University, USA
Felix Ulmer Université Rennes 1, France
Roland Vollmar Universität Karlsruhe, Germany

Table of Contents

Cryptography I

On the Security of Beth’s Identification Schemes against Active and
Concurrent Adversaries . 1

Giovanni Di Crescenzo

Designs
Steiner t-Designs for Large t . 18

Michael Huber

New Spatial Configurations . 27
Harald Gropp

Construction of Large Constant Dimension Codes with a Prescribed
Minimum Distance . 31

Axel Kohnert and Sascha Kurz

Quantum Computing

Invited Talk: Embedding Classical into Quantum Computation 43
Richard Jozsa

A Criterion for Attaining the Welch Bounds with Applications for
Mutually Unbiased Bases . 50

Aleksandrs Belovs and Juris Smotrovs

An Efficient Quantum Algorithm for the Hidden Subgroup Problem
over Weyl-Heisenberg Groups . 70

Hari Krovi and Martin Rötteler

Algorithms

Computing Equiangular Lines in Complex Space . 89
Markus Grassl

Complexity of Comparing Monomials and Two Improvements of the
Buchberger-Möller Algorithm . 105

Samuel Lundqvist

Coding Theory

Invited Talk: Decoding Cyclic Codes: The Cooper Philosophy
(Extended Abstract) . 126

Teo Mora and Emmanuela Orsini

XII Table of Contents

Kernel Dimension for Some Families of Quaternary Reed-Muller
Codes . 128

J. Pernas, J. Pujol, and M. Villanueva

Cryptography II

Coding-Based Oblivious Transfer . 142
Kazukuni Kobara, Kirill Morozov, and Raphael Overbeck

Protection of Sensitive Security Parameters in Integrated Circuits 157
Dejan E. Lazich and Micaela Wuensche

On Reconstruction of RC4 Keys from Internal States 179
Shahram Khazaei and Willi Meier

Author Index . 191

On the Security of Beth’s Identification Schemes
against Active and Concurrent Adversaries

Giovanni Di Crescenzo

Telcordia Technologies, Piscataway, NJ, USA
giovanni@research.telcordia.com

Abstract. One of the earliest identification schemes was proposed by
Beth in [6]. Since its introduction, variations and generalizations of this
scheme have been considered, and, recently, the property of security
against passive impersonation was shown, under a weak unforgeability
assumption on the hashed El Gamal signature scheme, for two such vari-
ants: one in the standard (i.e., not identity-based) and one in the identity-
based model. However, the security of both protocols under active and
concurrent impersonation attacks was left open.

In this paper we prove that very minor modifications to these schemes
result in schemes that satisfy security under active and concurrent imper-
sonation attacks, assuming a one-more-dlog assumption. The resulting
protocols are just as efficient as the original variants, which are, in turn,
somewhat more efficient (but less general) of the original one proposed
by Beth.

1 Introduction

An identification scheme is a method for a party A to convince another party B
of A’s identity. While identification schemes are routinely used in real-life using
physical proofs of identity (e.g., identity cards, driving licenses, etc.), computer
technology has raised the problem of remote identification schemes; i.e., iden-
tification schemes where A and B are physically distant. As of today, several
problems related to identification schemes have been studied, several security
notions and schemes have been proposed, and the study of (remote) identifi-
cation schemes is an important research area in Cryptography. Here, the most
common scenario, which we also study in this paper, is that of A publishing a
‘public key’ and keeping secret a matching ‘secret key’, and using the secret key
to identify to B.

Security Notions. Important problems in this area include formulating appro-
priate security notions for an identification scheme. A first natural notion that
can be proposed is that an identification scheme is secure if no efficient adversary
can impersonate A, even after witnessing many identification sessions between
A and B (this notion is usually called ‘security against an impersonation attack
of passive type’, since the adversary is passively eavesdropping sessions between
A and B). Note that the adversary is not given the secret key. A second and

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 G. Di Crescenzo

stronger notion is that an identification scheme is secure if no efficient adver-
sary can impersonate A, even after taking part in many sequential identification
sessions with A, playing as B (this notion is usually called ‘security against an
impersonation attack of active type’, since the adversary is actively involved in
the sessions between A and B before attempting the impersonation attempt).
An even stronger notion is ‘security against an impersonation attack of concur-
rent type’, which extends the previous notion in that the identification sessions
played by the adversary with A before attempting its impersonation attempt
can be run concurrently with multiple entities that use A’s secret key.

Previous work. The first identification schemes have been given in [12,13,15]
and were based on the hardness of the number-theoretic problem of quadratic
residuosity modulo a composite integer. Another important contribution of [13]
is the general paradigm of using zero-knowledge [15] proofs of knowledge in order
to prove the knowledge of an identity without revealing its associated secret key.
Since then, several improvements and variants of the mentioned schemes have
been proposed, mostly motivated by efficiency considerations (we mention, in
particular, [6,17,20,18], but see also references in [1]). Many of the mentioned
schemes are efficient in all metrics of interest (i.e., time and communication
complexity).

While some of the early identification schemes (e.g., [12,13,18]) were given a
proof of security against active impersonation attacks (and can be showed to
be secure against concurrent impersonation attacks), this was not immediately
the case for other schemes. For instance, the popular schemes in [17,20] were
only proved to be secure against active and concurrent attacks much later in [4].
Moreover, the status of other schemes, including Beth’s scheme in [6], with re-
spect to these security notions is currently unknown. Given the special efficiency
of these schemes, it remains of great interest to prove, disprove their security
against advanced security notions.

Our contribution. We consider the identification scheme from [6], which is one
of the earliest identification scheme and is based on one of the most popular sig-
nature schemes (i.e., El Gamal signatures [5]). This scheme has already received
some attention in the literature, as it was revised and generalized in [7,8], and
further studied in [1].

The scheme in [6] had been proposed in the identity-based model, a more
complex model than the standard model discussed above, where the user’s se-
cret key is somehow tied to the user’s identity by a trusted authority. In [1] it was
observed that many identification schemes proposed in the identity-based model
had a corresponding scheme in the standard model, and viceversa, and a scheme
in one model could be mapped to a scheme in the other model via a particular
transformation, if some specific ‘convertibility’ condition was satisfied. The au-
thors in [1] used this approach to surface several identification schemes in one
model that were related to the known scheme in the other model, proved several
security results on the surfaced schemes, and left some related open problems.
In particular, they proposed an identification scheme in the standard model,
which we call Beth-SI-0, that is uniquely related to (a slightly more efficient and

On the Security of Beth’s Identification Schemes 3

less general variant of) the identification scheme in the identity-based model
from [6]. They also proved scheme Beth-SI-0 to be secure against passive im-
personation, assuming the universal unforgeability under no-message attack of
the hashed-message El Gamal signature scheme [5]. Using their transformation
based on the convertibility property, they also proposed an identification scheme
in the identity-based model, which we call Beth-IBI-0, preserving the same type
of security. Finally, they left open the security of both schemes Beth-SI-0 and
Beth-IBI-0 against active and concurrent impersonation attacks.

In this paper we define a very minor, seemingly irrelevant, variation of scheme
Beth-SI-0, which we call Beth-SI-1, and prove it secure in the standard model
against active and concurrent impersonation attacks, under a one-more-dlog as-
sumption (see also [4,2] for related assumptions). Here, we note that scheme
Beth-SI-1 maintains the same efficiency as scheme Beth-SI-0. We then observe
that scheme Beth-SI-1 also satisfies the mentioned convertibility condition and
thus obtain a scheme Beth-IBI-1 for which we can prove security against active
and concurrent impersonation attacks, under the same intractability assump-
tion, in the identity-based model. Our minor modification preserves the same
time and communication efficiency of the starting schemes, which are, in turn,
more efficient but less general variants of Beth’s original scheme [6].

Organization of the paper. We start with basic modeling and formal def-
initions in Section 2. We review the El-Gamal signature scheme [5], and the
identification scheme Beth-SI-0 in Section 3. We then describe scheme Beth-SI-1
and prove its security in Section 4. Finally, we discuss the extension to scheme
Beth-IBI-1 in Section 5.

2 Definitions

In this section we give the scenario for identification schemes, defining the entities
involved, the assumed connectivity among them, the phases, the (sub)protocols,
and their security requirements. We start with some basic notations.

Basic notations. The expression y←S denotes the probabilistic process of ran-
domly and independently choosing y from set S. The expression y←A(x1, x2, . . .)
denotes the (possibly probabilistic) process of running algorithm A on input
x1, x2, . . . and any necessary random coins, and obtaining y as output. The
expression z ← (A(x1, x2, . . .)←→ B(y1, y2, . . .)) denotes the (possibly proba-
bilistic) process of running an interactive protocol [15] between algorithm A,
taking as input x1, x2, . . . and any necessary random coins, and algorithm B,
taking as input y1, y2, . . . and any necessary random coins, where tr is the se-
quence of messages exchanged by A and B as a result of this execution, and z
is B’s final output. If mi denotes the i-th message sent by, say, algorithm A, in
an interactive protocol (A(x)←→ B(y)), we also denote the process to create
this message as mi←A(x, m1, . . . , mi−1), where m1, . . . , mi−1 are the previous
messages exchanged between A and B.

4 G. Di Crescenzo

System scenario and entities. We consider an arbitrary system (or network)
containing services of interest to a number of users. Authorization to access
such services is checked by a server, via an execution of a 2-party protocol,
called identification scheme, run with the interested user. Such executions can
happen sequentially (each execution starting after the previous one is finished)
or concurrently (the server runs at the same time one execution with each one
of many users). For simplicity, we assume that the communication link between
each user and the server is private or not subject to attacks, although we note
that the model in which this link is also subject to adversary attacks is of or-
thogonal focus in the areas of cryptography and security (but is not part of the
standard model for identification schemes, as studied in the cryptography area,
and in this paper as well). We also denote a user with the term ‘prover’ and
the server with the term ‘verifier’, since in an identification scheme the user will
prove her/his identity to the server.

Algorithms and Correctness Requirement. Let σ be a security parameter,
expressed in unary notation (i.e., 1σ). An identification scheme (with security
parameter σ) consists of a setup algorithm or subprotocol, typically run between
the server and a given user, or by the user alone; and an identification subproto-
col, the latter in turn consisting of a prover algorithm, run by the user/prover,
and a verifier algorithm, run by the server/verifier.

The setup algorithms that we consider, denoted as KG, are only run by the
user. On input a security parameter σ in unary, algorithm KG returns a public
key pk and a matching secret key sk, in time at most polynomial in σ.

The prover algorithm P is an interactive Turing machine, as defined in [15],
that, given as input pk, sk, and the messages exchanged so far with the verifier
algorithm, returns a new message for the server, in time polynomial in σ.

The verifier algorithm V is also an interactive Turing machine, that, given as
input pk, and the messages exchanged so far with the prover algorithm, returns
a new message for the user running the prover algorithm. At the end of the
interaction with this user, V also returns a value in {accept,reject}, denoting
whether the server positively identifies the user or not. In both cases, V runs in
time polynomial in σ.

Informally, the (natural) correctness requirement states that at any time,
a server positively identifies users with the appropriate secret key. A formal
definition follows.

Definition 1. Let σ be a security parameter and let IS = (KG,P,V) be an
identification scheme. We say that IS satisfies correctness if it holds that

Prob [(pk, sk)←KG(1σ); (tr, out)←(P(pk, sk)←→ V(pk)); out = accept) = 1] .

Security Requirements. As typically done in the literature on identification
schemes, we study security against impersonation; that is, against an adversary
that, given all public keys (but no secret key), tries to convince the server to

On the Security of Beth’s Identification Schemes 5

be an authorized user. We consider three types of impersonation attacks1, of
increasing strength:

1. Passive Impersonation Attack: after a pair of public and secret keys is gen-
erated, the adversary can choose to eavesdrop transcripts of executions of
the identification scheme between P and V, until it decides to make an im-
personation attempt; at this point, the adversary tries to make V accept
without knowing the secret key.

2. Active Impersonation Attack: after a pair of public and secret keys is gen-
erated, the adversary can choose to engage, acting as a server, in sequential
executions of the identification scheme with P until it decides to make an
impersonation attempt; at this point, the adversary tries to make V accept
without knowing the secret key.

3. Concurrent Impersonation Attack: this attack further extends the active at-
tack in that the adversary can choose to engage, acting as a server, in con-
current executions of the identification scheme with a different instantiation
of P (using the same public and private keys), until it decides to make an
impersonation attempt; thus, at any given time, the adversary can decide
to start a new session with a new instantiation of P, to continue a previous
session by sending the next verifier’s message, or to start the impersonation
attempt.

Formally, for x ∈ { passive, active, concurrent }, for any polynomial-time al-
gorithm A = (Av, Ap), we define the experiment ExpIS,A

x , that describes the
x-type impersonation attack, and returns 1 (resp., 0) if the attack is successful
(resp., not successful). We detail the experiments for x = active and x = con-
current, and then describe the minor variation needed to obtain the experiment
for x = passive.

ExpIS,A
active(1

σ)
1. (pk, sk)←KG(1σ)
2. a←Av(1σ, pk)
3. while (a �= attack) do

(tr, out)← (P (pk, sk)←→ Av(pk))
(a, aux)←Av(1σ, aux, tr, out)

4. (tr, out)← (Ap(1σ, aux)←→ V (pk))
5. if out = accept then return: 1

else return: 0.

ExpIS,A
concurrent(1

σ)
1. (pk, sk)←KG(1σ)
2. (a, j, aux)←Av(1σ, pk)
3. trj ←∅
4. while (a �= attack) do

mesp ←Pj(pk, sk, trj)
trj ← trj|mesp

(a,mesv, j, aux)←Av(1σ, aux,mesp)
if a = start then trj ←∅
if a = continue then

trj ← trj |mesv

5. (tr, out)← (Ap(1σ, aux)←→ V (pk))
6. if out = accept then return: 1

else return: 0.

1 In this paper we do not consider resetting impersonation attacks. Many popular
schemes based on proofs of knowledge, like the ones we consider, are immediately
insecure against resetting impersonation attacks.

6 G. Di Crescenzo

ExpIS,A
passive(1

σ) is quickly obtained from ExpIS,A
active(1

σ) by replacing the line

‘(tr, out)←(P (pk, sk)←→ Av(pk))’

in step 3 with the line

‘(tr, out)←(P (pk, sk)←→ V (pk))’.

We are now ready to define the security requirement for impersonation against
passive, active or concurrent attacks.

Definition 2. Let σ be a security parameter and let IS = (KG,P,V) be an
identification scheme. For x ∈ { passive, active, concurrent }, we say that IS

is secure against an impersonation attack of type x if for any algorithm A =
(Av, Ap), it holds that

Prob
[
b←ExpIS,A

x (1σ) : b = 1
]
≤ ε,

for some function ε negligible in σ.

Remarks and Performance Metrics. An identification scheme secure against
a concurrent (resp., active) attack is also secure secure against active (resp.,
passive) attack. Following previous papers in the literature, we also pay special
attention to minimize the time complexity of both prover and verifier algorithms,
as well as the communication complexity of the identification scheme (i.e., the
length of the messages exchanged during the identification subprotocol, as a
function of the security parameter).

3 Preliminaries

We start our analysis by recalling two preliminary schemes that will be useful
to introduce our results. First, we review the El-Gamal signature scheme [5],
which is used in different ways in both identification schemes described in this
paper. Second, we review a recent identification scheme in the standard model,
proposed in [1] and denoted as Beth-SI-0, which is obtained as a variant of Beth’s
identification scheme in the identity-based model [6].

3.1 El-Gamal Signature Scheme

The El-Gamal signature scheme is one of the earliest and most influential digital
signature schemes in the cryptography literature. We recall some notation and
then describe the scheme.

Some notation. Let 1σ be a security parameter and let l be a challenge length
function over the positive integers. Also, let G be a cyclic multiplicative group,
and let q, g denote its order and a generator, respectively. We say that G has

On the Security of Beth’s Identification Schemes 7

prime order if q is prime. We also say that a probabilistic polynomial-time al-
gorithm Gen is a prime-order cyclic multiplicative group generator, if, on input
1σ, generates a triple (desc(G), q, g), where desc(G) denotes the description of a
prime-order cyclic multiplicative group G, q denotes its order and g is a generator
of G.

The El Gamal signature scheme. We actually recall a variant of the original
scheme, called hashed-message El Gamal signature scheme where the message is
processed by hashing it into an element of Zq, using a collision-resistant hash
function H . This scheme can be formally defined as a triple (KG, Sign, Verify)
of efficient algorithms, which are, in turn, defined as follows.

The Algorithm KG: On input security parameter 1σ, run the following instruc-
tions: let (desc(G), q, g)←Gen(1σ) and x←Zq , set y = gx, pk = (desc(G), q, g, X)
and sk = (pk, x), and return: (pk, sk).

The Algorithm Sign: On input sk = (pk, x) and message M , where pk =
(desc(G), q, g), run the following instructions: let r← Zq, set R = gr and s =
r−1(H(M)− xR) mod q, and return: (R, s)

The Algorithm Verify: On input pk, M, sig, where pk = (desc(G), q, g), and
sig = (R, s), check that XRRs ≡ gH(M). If yes, return: 1 otherwise return: 0.

The El Gamal signature scheme (without the hashing-based message prepro-
cessing) was first presented in [5] and variants of it have been studied in several
works. Yet another variant, consisting of preprocessing the message by comput-
ing H(R, M) instead of H(M), was studied in [19] and proved to be secure,
in the random oracle model, assuming the intractability of computing discrete
logarithms.

3.2 The Identification Scheme Beth-SI-0

The identification scheme proposed in [6] is an identity-based identification
scheme. In [1] an approach was proposed to uniquely bind any one in a large
class of identification schemes in the standard model (also called “convertible”
identification schemes) to an identification scheme in the identity-based model.
By using this approach, the authors in [1] surfaced an identification scheme in
the standard model that is uniquely related to (a slightly more efficient and
less general variant of) the identity-based identification scheme in [6]. They also
proved this scheme to be secure against passive impersonation, assuming the uni-
versal unforgeability under no-message attack of the hashed-message El Gamal
signature scheme [5]. We now give some notation and then recall the formal
description of the Beth-SI-0=(KG0,P0,V0) scheme.

Description of the scheme. In Figure 2 we formally describe the identifi-
cation scheme Beth-SI-0, based on any prime-order cyclic multiplicative group
generator Gen and any challenge length function l.

8 G. Di Crescenzo

Key Generation algorithm: On input security parameter 1σ, run
the following instructions:

1. let (desc(G), q, g)←Gen(1σ);
2. let r, x, h←Zq;
3. set R←gr, X ←gx and s←r−1(h − Rx)mod q;
4. set pk = (1σ, desc(G), q, g, X, h) and sk = (pk, R, s);
5. return: (pk, sk).

Identification Protocol.

Common input: security parameter 1σ and public key pk.
P’s private input: secret key sk.

P(round 1):
1. let y←Zq;
2. set Y = R−y and send (R, Y) to V

V(round 2):
1. let c←Z2l(σ) and send c to P

P(round 3):
1. set z←y + cs mod q and send z to V

V(decision): if R,Y ∈ G, z ∈ Zq, and gch ≡ RzY XcR, then return:
accept else return: reject.

Fig. 1. The modified Beth’s standard identification scheme from [1]

Properties of the scheme. Informally speaking, in scheme Beth-SI-0, the in-
teraction between the prover algorithm P0 and the verifier algorithm V0 can be
shown to have two properties: (1) it is a proof of knowledge of an El-Gamal signa-
ture (R, s) of the message h in the user’s public key pk; (2) it is a honest-verifier
zero-knowledge proof of knowledge of the value s in the El-Gamal signature.
Both properties have an important role in [1] to prove, in the random oracle
model, that scheme Beth-SI-0 secure against passive impersonation assuming
that the hashed-message ElGamal signature scheme is universally unforgeable
under no-message attacks. However, the security of Beth-SI-0 against active and
concurrent impersonation is left as an open problem in [1]. In the next section
we define a minor variation of Beth-SI-0, resulting in scheme Beth-SI-1, being
provable secure against active and concurrent impersonation, under appropriate
assumptions.

Note that the El-Gamal signature (R, s) of h can be computed by algorithm
P0 using the secret key sk. Two further aspects are worth mentioning as an
introduction to the remaining schemes in the paper. First, the component R
of the El-Gamal signature (R, s) is part of the secret key sk, and in different
executions of scheme Beth-SI-0 the honest prover sends precisely R in the clear
to the verifier (but a dishonest prover may choose to use a value R′ �= R instead).
Second, the prover algorithm P0 can run multiple executions of scheme Beth-
SI-0 in polynomial time when using the same El-Gamal signature (R, s) as an
auxiliary input.

On the Security of Beth’s Identification Schemes 9

In the scheme Beth-SI-1 that we analyze in Section 4, we slightly modify
Beth-SI-0 precisely in these two aspects. Specifically, we simply move the value
R from the secret key sk to the public key pk. One positive consequence from
this modification is that a dishonest prover will be easily caught if using a value
R′ �= R during the identification protocol.

4 The Identification Scheme Beth-SI-1

In this section we present our modification to the identification scheme Beth-SI-0
in the standard model, as described in Section 3. The resulting scheme, Beth-
SI-1, is proved to be secure against concurrent (and thus, active) impersonation
under the one-more-dlog assumption. We obtain the following

Theorem 1. The identification scheme IS = Beth-SI-1 with group generator
Gen and challenge length function l is secure against an impersonation attack
of concurrent type, under a one-more-dlog assumption. Specifically, for any ad-
versary A running in time tA, there exists an adversary B running in time
tA + (q + 1) ·O(k3), such that

Prob
[
ExpIS,A

concurrent(1
σ) = 1

]
≤ 2−l(σ) + Prob

[
ExpB

omd(1
σ) = 1

]
,

where σ denotes a security parameter, q is the number of sessions run by A, k is
the length of group elements, experiment ExpIS,A

concurrent is defined in Section 2
and experiment ExpB

omd is defined in Section 4.

In the rest of this section we prove Theorem 1. First we describe scheme Beth-SI-
1, then we present a one-more-dlog assumption, and finally we prove the scheme’s
security under this assumption, as stated in the theorem.

Description of scheme Beth-SI-1. Scheme Beth-SI-1=(KG1,P1,V1) is almost
identical to scheme Beth-SI-0. In particular, the interaction between the prover
algorithm P1 and the verifier algorithm V1 keeps the same two above properties:
(1) it is a proof of knowledge of an El-Gamal signature (R, s) of the message
h in the user’s public key pk; (2) it is a honest-verifier zero-knowledge proof of
knowledge of the value s in the El-Gamal signature. The main difference is as
follows: in KG0, the component R of the El-Gamal signature (R, s) is part of
the secret key sk, and in different executions of scheme Beth-SI-0 the honest
prover sends precisely R in the clear to the verifier (but a dishonest prover may
choose to use a value R′ �= R). Instead, in KG1, the value R is part of the user’s
public key; thus, P1 does not need to send this value to V1 and in different
executions of scheme Beth-SI-0 both the honest prover and a dishonest prover
are bound to use precisely the same value R. For completeness, we still present
the formal description of Beth-SI-1 in Figure 2 (here, we use the same notations
as for scheme Beth-SI-0).

10 G. Di Crescenzo

Key Generation algorithm: On input security parameter 1σ, run
the following instructions:

1. let (desc(G), q, g)←Gen(1σ);
2. let r, x, h←Zq;
3. set R←gr, X ←gx and s←r−1(h − Rx)mod q;
4. set pk = (1σ, desc(G), q, g, R, X, h) and sk = (pk, s);
5. return: (pk, sk).

Identification Protocol.

Common input: security parameter 1σ and public key pk.
P’s private input: secret key sk.

P(round 1):
1. let y←Zq;
2. set Y = R−y and send Y to V

V(round 2):
1. let c←Z2l(σ) and send c to P

P(round 3):
1. set z←y + cs mod q and send z to V

V(decision): if R,Y ∈ G, z ∈ Zq , and gch ≡ RzY XcR, then return:
accept else return: reject.

Fig. 2. The identification scheme Beth-SI-1 in the standard model

The performance properties of Beth-SI-1 are essentially the same as for Beth-
SI-0. The only difference is in the communication complexity, as in Beth-SI-0, the
prover sends 2 elements from group G, while in Beth-SI-1 the prover sends only
1. We now concentrate on the proof that this scheme is secure against concurrent
impersonation under the one-more-dlog assumption. We start by reviewing the
latter assumption.

Our One-More-Dlog Assumption. We use the same notations on groups as
from the previous section. Informally speaking, the one-more-dlog assumption
postulates the hardness of obtaining n discrete logarithms of n challenge values
from group G, while the number of available queries to an oracle solving the
discrete logarithm problem is strictly less than n. An assumption of this type
(i.e., the one-more-RSA-inversion assumption) was first proposed in [2] and used
there to prove the security of Chaum’s blind signature scheme [9], and used in
[4] to prove the security of the Guillou-Quisquater’s digital signature scheme
[17] under active and concurrent attacks. A one-more-dlog assumption was first
used in [1], where it was used to prove the security of Schnorr’s digital signature
scheme [20] under active and concurrent attacks. Our one-more-dlog assumption
considers an efficient adversary interacting with two oracles:

1. a challenge oracle CG that, on input (1σ, desc(G), q, g) and an empty query
query =⊥ from the adversary, returns a random value W ∈ G,

On the Security of Beth’s Identification Schemes 11

2. an inversion oracle IG that, on input (1σ, desc(G), q, h), for some generator
h ∈ G, and a query query = W from the adversary, returns value w such
that hw = W ,2

and is formally stated as follows.

Definition 3. Let σ be a security parameter, let (desc(G), q, g) be the output
of algorithm Gen on input 1σ, let CG be a challenge oracle and let IG be an
inversion oracle.

Let ExpA
omd(1

σ) denote the probabilistic experiment consisting of the follow-
ing steps: first, (desc(G), q, g) is obtained as the output of algorithm Gen on
input 1σ; second, tuple (w1, . . . , wn) is obtained as the output of A, after mak-
ing n queries to CG and ≤ n − 1 queries to IG, for some n polynomial in σ;
finally, the experiment returns 1 if Wi = gwi , for i = 1, . . . , n, where W1, . . . , Wn

were oracle CG’s answers.
The one-more-dlog assumption states that for any algorithm A that has access

to oracles CG, IG and runs in polynomial time (not counting the time needed by
the oracles to answer A’s queries),

Prob
[
b←ExpA

omd(1
σ) : b = 1

]
≤ ε,

for some function ε negligible in σ, where the probability is over the random
coins of Gen and A.

We reiterate the warnings for assumptions of similar type [2,4], by mentioning
that one-more-dlog assumptions are instances of a relatively new type of as-
sumptions. Even though the discrete logarithm problem has been studied for a
long time, and is one of the few problems that cryptographers puts a significant
amount of trust on, the particular type of assumption that we use requires more
study before deserving the same amount of trust. Still, this assumption remains
a clean and natural statement about a number-theoretic problem, which is po-
tentially much simpler to analyze than the identification scheme based on it (a
simplification that is, after all, a major goal in complexity-theoretic cryptogra-
phy). Needless to say, using such an assumption to solve a problem that has
been of interest since 1988 [6] and explicitly open since 2004 [1] is better than
not solving the problem at all.

Proof of Security. We now prove that Beth-SI-1 is secure against concurrent
impersonation under the one-more-dlog assumption, as claimed in Theorem 1.
The proof proceeds by contradiction. We assume that Beth-SI-1 is not secure
against concurrent impersonation and use the adversary breaking the Beth-SI-1
scheme to construct an adversary that violates the one-more-dlog assumption.

Formally, we assume (towards contradiction) that there exists a polynomial-
time algorithm A = (Av, Ap) for which the experiment ExpIS,A

x , defined in Sec-
tion 2, returns 1 with some not negligible probability. Our goal is to show there
exists an algorithm B that takes (1σ, desc(G), q, g) as input, makes n queries to

2 Here is where our assumption differs from the assumption in [4].

12 G. Di Crescenzo

Input to B: (1σ, desc(G), q, g), as returned by an execution of KG1(1σ)

Instructions for B:

1. make a query to oracle CG and obtain output W0

2. let h, x′ ←Zq and set X ′ ←gx′
and R′ = W0

3. set pk = (1σ, desc(G), q, R′, g,X ′, h)
4. repeat

(a, mes, i, state)←Av(1σ, pk, state)
if a = start then

make a query ⊥ to oracle CG(1σ, desc(G), q, g, ·) and obtain output Wi

send Y = Wi to Av

tri ←Y and state←Av(1σ, tri, state)
if a = continue then

let mes = ci ∈ Z2l(σ) ,
make query (gcihY −1(X ′)−ciR′

) to oracle IG(1σ, desc(G), q, R′, ·)
and obtain output zi

send zi to Av

tri ← tri|zi and state←Av(1σ, tri, state)
until (a = attack)

5. let q be the number of sessions run by Av

6. let (Y ′, state)←Ap(1σ, state)
7. let c′

1 ←Z2l(σ) and send c′
1 to Ap

8. let (z′
1, state)←Ap(1σ, state, c′

1)
9. rewind Ap to the state just after returning pair (Y ′, state)

10. let c′
2 ←Z2l(σ) and send c′

2 to Ap

11. let (z′
2, state)←Ap(1σ, state, c′

2)
12. if V 1(pk, Y ′, c′

1, z
′
1) = accept and V 1(pk, Y ′, c′

2, z
′
2) = accept then

let s = (z′
1 − z′

2)/(c′
1 − c′

2) and w0 = r = (h − R′x′)/s
for i = 1, . . . , q,

let wi = ci(h − x′R′) − rzi

return: (w0, w1, . . . , wq).
else return: ⊥.

Fig. 3. The algorithm B trying to break the one-more-dlog assumption

challenge oracle CG obtaining W1, . . . , Wn as answers, makes ≤ n− 1 queries to
an inversion oracle IG, runs in time polynomial in σ (not counting the time taken
by oracles CG, IG to answer A’s queries), and, with probability not negligible in
σ, returns tuple (w1, . . . , wn) such that Wi = gwi , for i = 1, . . . , n.

A formal description of algorithm B can be found in Figure 3. First of all, B
constructs a public key pk for which the value X is replaced by a value X ′ for
which it knows the discrete log x′, and the value R is replaced by a value R′ equal
to the challenge W0 returned by the oracle CG. Then, A = (Av, Ap)’s concurrent
impersonation attack is simulated, where P’s messages to Av are simulated by B
using the challenge oracle (resp., the inversion oracle) to generate the first (resp.,
the second) of P’s messages in an identification session. Here, an important
technical point is that the inversion oracle is queried using R′ (rather than g)
as a generator. At the end of all concurrent identification sessions, algorithm B

On the Security of Beth’s Identification Schemes 13

extracts from Ap a witness s and uses it, together with value x′, to compute a
discrete logarithm r of R′ = W0 modulo g without querying the inversion oracle.
This value r is then used, together with value x′, to compute discrete logarithms
of W1, . . . , Wq modulo g. This implies that B obtains q + 1 discrete logarithms,
even if making q + 1 queries to the challenge oracle and only q queries to the
inversion oracle, thus turning A’s success in its concurrent attack into a violation
of the one-more-dlog assumption.

Let IS denote the scheme Beth-SI-1. Recall that we assume (towards contra-
diction) that adversary A = (Av, Ap) is such that Prob

[
ExpIS,A

concurrent(1
σ) = 1

]
is not negligible in σ. We now would like to prove that Prob

[
ExpB

omd(1
σ) = 1

]
is not negligible in σ.

Notations. We formally define two probabilities: the probability Prob [acc] =
Prob

[
AccExpIS(1σ) = 1

]
that V1 accepts in an execution of protocol Beth-SI-

1, when P1 and V1 are given additional state-related inputs stp, stv, respectively;
and the probability Prob [res] = Prob

[
ResExpIS(1σ) = 1

]
that V1 accepts

in both executions of protocol Beth-SI-1, when P1 and V1 are given additional
state-related inputs stp, stv, respectively, and P1 is rewinded by V1. Experiments
AccExpIS(1σ), ResExpIS(1σ) are defined as follows.

AccExpIS(1σ)
1. Y ←P1(pk, stp)
2. c←V 1(pk, stv, Y)
3. z←P1(pk, stp, Y, c)
4. if V 1(pk, stv, Y, c, z) = accept then

return: 1
else return: 0.

ResExpIS(1σ)
1. Y ←P1(pk, stp)
2. c1 ←V 1(pk, stv, Y)
3. z1 ←P1(pk, stp, Y, c1)
2. c2 ←V 1(pk, stv, Y)
3. z2 ←P1(pk, stp, Y, c2)
4. if V 1(pk, stv, Y, c1, z1) = accept then

if V 1(pk, stv, Y, c2, z2) = accept then
return: 1

5. return: 0.

Analysis. First of all, we show that algorithm B perfectly simulates the view
of algorithm A during experiment ExpIS,A

concurrent(1σ). This is easily seen for the
messages given from B to Ap as these are computed in exactly the same way
in both experiments. To complete the proof of this fact, we consider the mes-
sages sent from B to Av. There are two types of such messages: message Y ,
corresponding to the first prover’s message in protocol Beth-SI-1, and message
z, corresponding to the second prover’s message in protocol Beth-SI-1. Note that
in experiment ExpIS,A

concurrent, message Y is computed as equal to R−y, for some
random y ∈ Zq, and is thus uniformly distributed in group G, which is the same
distribution as the value Y = W0 returned by oracle CG in experiment ExpB

omd.
Furthermore, note that in experiment ExpIS,A

concurrent, message z is computed as
the value such that gch ≡ RzY XcR, which is the discrete logarithm (modulo
R) of gchY −1(X)−cR. This latter value is precisely how a query to oracle IG is
computed by algorithm B, resulting in the answer zi given to Av in experiment
ExpB

omd.

14 G. Di Crescenzo

This analysis implies the following two facts.

Fact 1. Prob
[
ExpIS,A

concurrent(1σ) = 1
]

= Prob [acc].

Fact 2. Prob
[
ExpB

omd(1
σ) = 1

]
= Prob [res].

We now need a result relating the probability Prob [acc] that Ap makes verifier
V1 accept to the probability Prob [res] that B can obtain two accepting con-
versations when rewinding Ap. This is obtained as an application of the Reset
Lemma from [4] (see also [3,19]) that applies to all 3-message public-coin pro-
tocols, including Beth-SI-1. As a corollary of this lemma, we have the following

Fact 3. [4] Prob [acc] ≤ 2−l(σ) + Prob [res].

By combining Facts 1, 2, 3, we obtain that

Prob
[
ExpIS,A

concurrent(1
σ) = 1

]
≤ 2−l(σ) + Prob

[
ExpB

omd(1
σ) = 1

]
,

as in the statement of Theorem 1. (Note that if Prob
[
ExpIS,A

concurrent(1
σ) = 1

]
is not negligible and l(σ) = ω(log σ), then Prob

[
ExpB

omd(1
σ) = 1

]
is also not

negligible.)
To complete the proof, we only need to calculate B’s running time. We note

that B runs Av, Ap, makes queries to oracles CG, IG (recall that we do not
count the running time needed to answer such queries), and performs additions,
multiplications modulo q and multiplications and exponentiations in the group
G, the latter being those that asymptotically dominate the running time. Overall,
B performs a constant number of exponentiations per session (see step 4) and 1
additional exponentiation (see step 2), so B’s running time can be bounded by
tA + (q + 1) ·O(k3), where k is the length of an element in group G.

5 The Identification Scheme Beth-IBI-1

In this section we sketch a corollary of Theorem 1. Specifically, we consider
a natural transformation of the scheme Beth-SI-1 in the standard model into a
scheme, denoted as Beth-IBI-1, in the identity-based model. This transformation,
which we call the standard-to-identity-based conversion, has been used by [1] (and
earlier, in the context of signatures, by [11]) and has the following attractive
security preservation property: if the original identification scheme is secure in
the standard model against an impersonation attack of passive (resp., active)
(resp., concurrent) type, then the resulting identification scheme is secure in the
identity-based model against an impersonation attack of passive (resp., active)
(resp., concurrent) type. The transformation only applies to a class of schemes
that have a special convertibility property, as defined in [1], and its security
analysis only applies in the random oracle model.

Sketch of technical details. Our starting point is scheme Beth-SI-1, which is
a (more efficient but less general) variant in the standard model of the original

On the Security of Beth’s Identification Schemes 15

identification scheme from [6]. We then note that this scheme enjoys the men-
tioned convertibility property, and invoke the standard-to-identity-based con-
version to obtain a scheme Beth-IBI-1. A similar approach was already used in
[1] to generate a scheme Beth-IBI-0, starting from the scheme Beth-SI-0 (also
recalled in Section 3) for which the authors proved security against passive imper-
sonation, assuming the unforgeability of the ElGamal signature scheme against
no-message attacks, and using the above security preservation property. Anal-
ogously, we combine this latter property with Theorem 1 to prove that scheme
Beth-IBI-1 is secure against impersonation attacks of concurrent (and thus, ac-
tive) type, under the one-more-dlog assumption. The only new fact to establish
to obtain this result is proving that scheme Beth-SI-1 enjoys the convertibil-
ity property. This does not logically follow from the fact that Beth-SI-0 enjoys
the convertibility property, but the technique used to prove this latter claim
requires only a few natural modifications to work for Beth-SI-1 as well (details
omitted here). In what follows, we formally describe scheme Beth-IBI-1, which

sKG algorithm: On input security parameter 1σ, run the following
instructions:

1. let (desc(G), q, g)←Gen(1σ);
2. let r, x←Zq;
3. set R←gr and X ←gx;
4. set mpk = (1σ, desc(G), q, g,R, X) and msk = (pk, r, x);
5. return: (mpk,msk).

uKG algorithm: On input security parameter 1σ, random oracle H ,
and mpk, msk, id, run the following instructions:

1. set h←H(id) and s←r−1(h − Rx)mod q;
2. set usk = (mpk, id, h, s);
3. return: usk.

Identification Protocol.

Common input: security parameter 1σ, master public key mpk and
identity id.
P’s private input: user secret key usk.

P(round 1):
1. let y←Zq;
2. set Y = R−y and send Y to V

V(round 2):
1. let c←Z2l(σ) and send c to P

P(round 3):
1. set z←y + cs mod q and send z to V

V(decision): compute h = H(id); if R, Y ∈ G, z ∈ Zq, and gch ≡
RzY XcR, then return: accept else return: reject.

Fig. 4. The identification scheme Beth-IBI-1 in the identity-based model

16 G. Di Crescenzo

is almost identical to scheme Beth-IBI-0, just like the corresponding schemes in
the standard model.

Formal description of scheme Beth-IBI-1. We first briefly recall the algo-
rithms in an identification scheme in the identity-based model. Here, an identifi-
cation scheme is a 4-tuple (rather than triple), consisting of two setup algorithms,
one prover and one verifier algorithm.

The server setup algorithm, denoted as sKG, is only run by the server. On
input a security parameter σ in unary, algorithm sKG returns a master public
key mpk and a master secret key msk in time at most polynomial in σ.

The user setup algorithm, denoted as uKG, is also run by the server. On
input a security parameter σ in unary, public key mpk, secret key msk, and a
user identity id, algorithm uKG returns a user secret key skid in time at most
polynomial in σ.

The prover and verifier algorithms P,V are as in the standard model, with
the only addition that they both take identity id as an additional input.

We formally describe scheme Beth-IBI-1 in Figure 4.

Acknowledgements. Many thanks go to the MMICS 08 anonymous referees
for their useful comments on the submitted version of this paper.

References

1. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. Journal
of Cryptology 16(3), 185–215 (2003)

3. Bellare, M., Miner, S.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, p. 431. Springer, Heidelberg (1999)

4. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, p. 162. Springer, Heidelberg (2002)

5. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

6. Beth, T.: Efficient zero-knowledged identification scheme for smart cards. In:
Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–84. Springer,
Heidelberg (1988)

7. Burmester, M., Desmedt, Y., Beth, T.: Efficient Zero-Knowledge Identification
Schemes for Smart Cards. The Computer Journal 35(1), 21–29 (1992)

8. Burmester, M., Desmedt, Y., Piper, F., Walker, M.: A General Zero-Knowledge
Schemes. Designs, Codes and Cryptography 12(1) (1997)

9. Chaum, D.: Blind Signatures for Untraceable Payments. In: Proc. of CRYPTO
1982, Plemum, NY (1983)

10. De Santis, A., Di Crescenzo, G., Persiano, G.: Communication-Efficient Anony-
mous Group Identification. In: Proc. of 1998 ACM Conference on Computer and
Communications Security. ACM Press, New York (1998)

On the Security of Beth’s Identification Schemes 17

11. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg
(2002)

12. Feige, U., Shamir, A.: Witness Indistinguishable and Witness Hiding Protocols. In:
Proc. of the 22nd Annual ACM Symposium on the Theory of Computing (STOC
1990) (1990)

13. Feige, U., Fiat, A., Shamir, A.: Zero Knowledge Proofs of Identity. Journal of
Cryptology 1(2), 77–94 (1988)

14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

15. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. SIAM J. on Computing 18(1) (1989)

16. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing 17(2) (1988)

17. Guillou, L.C., Quisquater, J.: A Paradoxical Identity-Based Signature Scheme Re-
sulting from Zero-Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

18. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

19. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

20. Schnorr, C.: Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

21. Schnorr, C.: Security of 2t-root identification and signatures. In: Koblitz, N. (ed.)
CRYPTO 1996. LNCS, vol. 1109, pp. 143–157. Springer, Heidelberg (1996)

22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

Steiner t-Designs for Large t

Michael Huber�

Institut für Mathematik, MA6-2, Technische Universität Berlin,
Straße des 17. Juni 136, D-10623 Berlin, Germany

mhuber@math.tu-berlin.de

Abstract. One of the most central and long-standing open questions in
combinatorial design theory concerns the existence of Steiner t-designs
for large values of t. Although in his classical 1987 paper, L. Teirlinck
has shown that non-trivial t-designs exist for all values of t, no non-
trivial Steiner t-design with t > 5 has been constructed until now. Un-
derstandingly, the case t = 6 has received considerable attention. There
has been recent progress concerning the existence of highly symmetric
Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007),
pp. 453–476] that no non-trivial flag-transitive Steiner 6-design can ex-
ist. In this paper, we announce that essentially also no block-transitive
Steiner 6-design can exist.

1 Introduction

One of the most central and long-standing open questions in combinatorial design
theory concerns the existence of Steiner t-designs for large values of t. Although
in his classical 1987 paper, L. Teirlinck [46] has shown that non-trivial t-designs
exist for all values of t, no non-trivial Steiner t-design with t > 5 has been
constructed until now. Understandingly, the case t = 6 has received considerable
attention. There has been recent progress concerning the existence of highly
symmetric Steiner 6-designs: The author [25] showed that no non-trivial flag-
transitive Steiner 6-design can exist. Moreover, he classified all flag-transitive
Steiner t-designs with t > 2 (see [22,23,24,25,26] and [28] for a monograph).
These results answer a series of 40-year-old problems and generalize theorems
of J. Tits [47] and H. Lüneburg [39]. Earlier, F. Buekenhout, A. Delandtsheer,
J. Doyen, P. Kleidman, M. Liebeck, and J. Saxl [6,15,35,37,43] had essentially
characterized all flag-transitive Steiner 2-designs. All these classification results
rely on the classification of the finite simple groups.

In this paper, we announce that essentially no block-transitive Steiner 6-design
can exist. This confirms a far-reaching conjecture of P. Cameron and C. Praeger
[10], stating that there are no non-trivial block-transitive 6-designs, for the im-
portant case of Steiner designs. Consequently, a further significant step towards
� The author gratefully acknowledges support by the Deutsche Forschungsgemein-

schaft (DFG).

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 18–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Steiner t-Designs for Large t 19

an answer to the fundamental open question “Does there exist any non-trivial
Steiner 6-design?” is provided – at least in the case of highly symmetric designs,
quoting arguably Gian-Carlo Rota [42]:

“A combinatorial object without symmetries doesn’t exist - by
definition.”

2 Combinatorial Designs

The study of combinatorial designs deals with a crucial problem of combinato-
rial theory, that of arranging objects into patterns according to specified rules.
This is a subject of considerable interest in discrete mathematics and computer
science, amongst others. In particular, there are close connections of design
theory with graph theory [11,48], finite and incidence geometry [5,16], group
theory [9,12,17,50], coding theory [11,27,29,30], information theory [14], cryp-
tography [40,45], as well as classification algorithms [34].

Combinatorial designs may be regarded as generalizations of finite projec-
tive planes. More formally: For positive integers t ≤ k ≤ v and λ, we define a
t-(v, k, λ) design to be a finite incidence structure D = (X,B, I), where X de-
notes a set of points, |X | = v, and B a set of blocks, |B| = b, with the following
regularity properties: each block B ∈ B is incident with k points, and each
t-subset of X is incident with λ blocks. A flag of D is an incident point-block
pair (x, B) ∈ I with x ∈ X and B ∈ B.

For historical reasons, a t-(v, k, λ) design with λ = 1 is called a Steiner
t-design (sometimes also a Steiner system). We note that in this case each
block is determined by the set of points which are incident with it, and thus
can be identified with a k-subset of X in a unique way. If t < k < v, then we
speak of a non-trivial Steiner t-design. As a simple example, the vector space
Zn

2 (n ≥ 3) with block set B taken to be the set of all subsets of four dis-
tinct elements of Zn

2 whose vector sum is zero is a (boolean) Steiner 3-(2n, 4, 1)
design. There are many infinite classes of Steiner t-designs for t = 2 and 3,
however for t = 4 and 5 only a finite number are known. For a detailed treat-
ment of combinatorial designs, we refer to [1,13,20,31,44]. In particular, [1,13]
provide encyclopedic accounts of key results and contain existence tables with
known parameter sets.

In what follows, we are interested in t-designs which admit groups of au-
tomorphisms with sufficiently strong symmetry properties such as transitivity
on the blocks or on the flags. We consider automorphisms of a t-design D as
pairs of permutations on X and B which preserve incidence, and call a group
G ≤ Aut(D) of automorphisms of D block-transitive (respectively flag-transitive,
point t-transitive, point t-homogeneous) if G acts transitively on the blocks (re-
spectively transitively on the flags, t-transitively on the points, t-homogeneously
on the points) of D. For short, D is said to be, e.g., block-transitive if D admits
a block-transitive group of automorphisms.

20 M. Huber

3 Basic Properties and Existence Results

We give some basic properties and known results concerning the existence of
t-designs which are important for the remainder of the paper.

If D = (X,B, I) is a t-(v, k, λ) design with t ≥ 2, and x ∈ X arbitrary, then
the derived design with respect to x is Dx = (Xx,Bx, Ix), where Xx = X\{x},
Bx = {B ∈ B : (x, B) ∈ I} and Ix = I |Xx×Bx . In this case, D is also called an
extension of Dx. Obviously, Dx is a (t− 1)-(v − 1, k − 1, λ) design.

For D = (X,B, I) a Steiner t-design with G ≤ Aut(D), let Gx denote the
stabilizer of a point x ∈ X , and GB the setwise stabilizer of a block B ∈ B. For
x, y ∈ X and B ∈ B, we define Gxy = Gx ∩Gy and GxB = Gx ∩GB .

For any x ∈ IR, let
x� denote the greatest positive integer which is at most x.
All other notations remain as defined in Sect. 2.

Basic necessary conditions for the existence of t-designs can be obtained via
elementary counting arguments (see, for instance, [1]):

Proposition 1. Let D = (X,B, I) be a t-(v, k, λ) design, and for a positive
integer s ≤ t, let S ⊆ X with |S| = s. Then the total number of blocks incident
with each element of S is given by

λs = λ

(
v−s
t−s

)(
k−s
t−s

) .
In particular, for t ≥ 2, a t-(v, k, λ) design is also an s-(v, k, λs) design.

It is customary to set r := λ1 denoting the total number of blocks incident with
a given point (referring to the ‘replication number’ from statistical design of
experiments, one of the origins of design theory).

Corollary 1. Let D = (X,B, I) be a t-(v, k, λ) design. Then the following holds:

(a) bk = vr.

(b)
(

v

t

)
λ = b

(
k

t

)
.

(c) r(k − 1) = λ2(v − 1) for t ≥ 2.

Corollary 2. Let D = (X,B, I) be a t-(v, k, λ) design. Then

λ

(
v − s

t− s

)
≡ 0 (mod

(
k − s

t− s

)
)

for each positive integer s ≤ t.

For non-trivial Steiner t-designs lower bounds for v in terms of k and t can be
given (see P. Cameron [7, Thm. 3A.4], and J. Tits [47, Prop. 2.2]):

Steiner t-Designs for Large t 21

Theorem 1. If D = (X,B, I) is a non-trivial Steiner t-design, then the follow-
ing holds:

(a) (Tits 1964): v ≥ (t + 1)(k − t + 1).
(b) (Cameron 1976): v − t + 1 ≥ (k − t + 2)(k − t + 1) for t > 2. If equality

holds, then (t, k, v) = (3, 4, 8), (3, 6, 22), (3, 12, 112), (4, 7, 23), or (5, 8, 24).

We note that (a) is stronger for k < 2(t − 1), while (b) is stronger for
k > 2(t− 1). For k = 2(t− 1) both assert that v ≥ t2 − 1.

The following result by R. Fisher [18] is classical, generally known as “Fisher’s
Inequality”:

Theorem 2. (Fisher 1940). If D = (X,B, I) is a non-trivial 2-(v, k, λ) design,
then b ≥ v, that is, there are at least as many blocks as points in D.

An important generalization to arbitrary t-designs is due to D. Ray-Chaudhuri
and R. Wilson [41, Thm. 1]:

Theorem 3. (Ray-Chaudhuri & Wilson 1975). Let D = (X,B, I) be a t-(v, k, λ)
design. If t is even, say t = 2s, and v ≥ k + s, then b ≥

(
v
s

)
. If t is odd, say

t = 2s + 1, and v − 1 ≥ k + s, then b ≥ 2
(
v−1

s

)
.

Exploration of the construction of t-designs for large values of t led to L. Teir-
linck’s celebrated theorem [46], one of the major results in design theory:

Theorem 4. (Teirlinck 1987). For every positive integer value of t, there exists
a non-trivial t-design.

However, although Teirlinck’s recursive methods are constructive, they only pro-
duce examples with tremendously large values of λ. Until now no non-trivial
Steiner t-design with t > 5 has been constructed.

Research Problem. Does there exist any non-trivial Steiner 6-design?

4 Approach via Symmetry

Besides recursive and set-theoretical approaches, many existence results for
t-designs with large t have been obtained in recent years by the method of
orbiting under a group (see, e.g., [2], [13, II.4]). Specifically, the consideration of
t-designs which admit groups of automorphisms with sufficiently strong symme-
try properties seems to be of great importance in our context - quoting arguably
Gian-Carlo Rota [42]:

“A combinatorial object without symmetries doesn’t exist - by
definition.”

We first state (cf. [49]):

22 M. Huber

Proposition 2. Let t be a positive integer, and G a finite (abstract) group.
Then there is a t-design such that the full group Aut(D) of automorphisms has
a subgroup isomorphic to G.

One of the early important results regarding highly symmetric designs is due to
R. Block [3, Thm. 2]:

Proposition 3. (Block 1965). Let D = (X,B, I) be a non-trivial t-(v, k, λ) de-
sign with t ≥ 2. If G ≤ Aut(D) acts block-transitively on D, then G acts point-
transitively on D.

For a 2-(v, k, 1) design D, it is elementary that the point 2-transitivity of
G ≤ Aut(D) implies its flag-transitivity. For 2-(v, k, λ) designs, this implication
remains true if r and λ are relatively prime (see, e.g., [16, Chap. 2.3, Lemma 8]).
However, for t-(v, k, λ) designs with t ≥ 3, it can be deduced from Proposition 3
that always the converse holds (see [4] or [22, Lemma 2]):

Proposition 4. Let D = (X,B, I) be a non-trivial t-(v, k, λ) design with t ≥ 3.
If G ≤ Aut(D) acts flag-transitively on D, then G acts point
2-transitively on D.

Investigating highly symmetric t-designs for large values of t, P. Cameron and
C. Praeger [10, Thm. 2.1] deduced from Theorem 3 and Proposition 3 the fol-
lowing assertion:

Proposition 5. (Cameron & Praeger 1993). Let D = (X,B, I) be a t-(v, k, λ)
design with t ≥ 2. Then, the following holds:

(a) If G ≤ Aut(D) acts block-transitively on D, then G also acts point

t/2�-homogeneously on D.

(b) If G ≤ Aut(D) acts flag-transitively on D, then G also acts point

(t + 1)/2�-homogeneously on D.

As for t ≥ 7 the flag-transitivity, respectively for t ≥ 8 the block-transitivity of
G ≤ Aut(D) implies at least its point 4-homogeneity, they obtained the following
restrictions as a fairly direct consequence of the finite simple group classification
(cf. [10, Thm. 1.1]):

Theorem 5. (Cameron & Praeger 1993). Let D = (X,B, I) be a t-(v, k, λ) de-
sign. If G ≤ Aut(D) acts block-transitively on D then t ≤ 7, while if G ≤ Aut(D)
acts flag-transitively on D then t ≤ 6.

Moreover, they formulatedthe following far-reachingconjecture(cf. [10,Conj. 1.2]):

Conjecture. (Cameron&Praeger 1993).There are nonon-trivial block-transitive
6-designs.

It has been shown recently by the author [25] that no non-trivial flag-transitive
Steiner 6-design can exist. Moreover, he classified all flag-transitive Steiner

Steiner t-Designs for Large t 23

t-designs with t > 2 (see [22,23,24,25,26] and [28] for a monograph). These re-
sults make use of the classification of all finite 2-transitive permutation groups,
which itself relies on the finite simple group classification. The characterizations
answer a series of 40-year-old problems and generalize theorems of J. Tits [47] and
H. Lüneburg [39]. Earlier, F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleid-
man, M. Liebeck, and J. Saxl [6,15,35,37,43] had essentially characterized all finite
flag-transitive linear spaces, that is flag-transitive Steiner 2-designs. Their result,
which also relies on the finite simple group classification, starts with a classical re-
sult of Higman and McLaughlin [21] and uses the O’Nan-Scott Theorem for finite
primitive permutation groups. For the incomplete case with a 1-dimensional affine
group of automorphisms, we refer to [6, Sect. 4] and [33, Sect. 3].

5 Non-existence of Block-Transitive Steiner 6-Designs

We assert the following main result:

Main Theorem. Let D = (X,B, I) be a non-trivial Steiner 6-design. Then
G ≤ Aut(D) cannot act block-transitively on D, except possibly when
G = PΓL(2, pe) with p = 2 or 3 and e is an odd prime power.

We will briefly outline the main ingredients of the proof. The long and technical
details will appear elsewhere:
• In order to investigate block-transitive Steiner 6-designs, we can in view

of Proposition 5 (a) make use of the classification of all finite 3-homogeneous
permutation groups, which itself relies on the finite simple group classification
(cf. [8,19,32,36,38]). The list of groups which have to be examined is as follows:

Let G be a finite 3-homogeneous permutation group on a set X with |X | ≥ 4.
Then G is either of

(A) Affine Type: G contains a regular normal subgroup T which is elemen-
tary Abelian of order v = 2d. If we identify G with a group of affine transforma-
tions

x → xg + u

of V = V (d, 2), where g ∈ G0 and u ∈ V , then particularly one of the following
occurs:

(1) G ∼= AGL(1, 8), AΓL(1, 8), or AΓL(1, 32)

(2) G0 ∼= SL(d, 2), d ≥ 2

(3) G0 ∼= A7, v = 24

or
(B) Almost Simple Type: G contains a simple normal subgroup N , and

N ≤ G ≤ Aut(N). In particular, one of the following holds, where N and v = |X |
are given as follows:

24 M. Huber

(1) Av, v ≥ 5
(2) PSL(2, q), q > 3, v = q + 1
(3) Mv, v = 11, 12, 22, 23, 24 (Mathieu groups)
(4) M11, v = 12

We note that if q is odd, then PSL(2, q) is 3-homogeneous for q ≡ 3 (mod 4),
but not for q ≡ 1 (mod 4), and hence not every group G of almost simple type
satisfying (2) is 3-homogeneous on X .
• If G ≤ Aut(D) acts block-transitively on any Steiner t-design D with t ≥ 6,

then in particular G acts point 2-transitively onD by Proposition 5 (a). Applying
Lemma 1 (b) yields the equation

b =

(
v
t

)(
k
t

) =
v(v − 1) |Gxy|
|GB|

,

where x and y are two distinct points in X and B is a block in B. Combined
with the combinatorial properties in Sect. 3, this arithmetical condition yields in
some of the cases under consideration immediately strong results. In other cases,
particular Diophantine equations arise which have to be examined in more detail.
• As for the flag-transitive treatment (cf. [25,26]), the projective group con-

taining PSL(2, q) – although group-theoretically well understood – requires some
complicated analysis in this context. This includes a detailed consideration of
the orbit-lengths from the action of subgroups of PSL(2, q) on the points of the
projective line. The cases excluded from the theorem remain elusive. However,
it seems to be very unlikely that admissible parameter sets of Steiner 6-designs
can be found in view of the arithmetical conditions that are imposed in these
cases.

References

1. Beth, T., Jungnickel, D., Lenz, H.: Design Theory. In: Encyclopedia of Math. and
Its Applications 69/78, vol. I and II. Cambridge Univ. Press, Cambridge (1999)

2. Betten, A.: Genealogy of t-designs, Australas. J. Comb. 29, 3–34 (2004)
3. Block, R.E.: Transitive groups of collineations on certain designs. Pacific J.

Math. 15, 13–18 (1965)
4. Buekenhout, F.: Remarques sur l’homogénéité des espaces linéaires et des systèmes

de blocs. Math. Z. 104, 144–146 (1968)
5. Buekenhout, F. (ed.): Handbook of Incidence Geometry. North-Holland, Amster-

dam (1995)
6. Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P.B., Liebeck, M.W., Saxl,

J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36,
89–94 (1990)

7. Cameron, P.J.: Parallelisms of Complete Designs. London Math. Soc. Lecture Note
Series, vol. 23. Cambridge Univ. Press, Cambridge (1976)

8. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. London
Math. Soc. 13, 1–22 (1981)

Steiner t-Designs for Large t 25

9. Cameron, P.J.: Permutation Groups. Cambridge Univ. Press, Cambridge (1999)
10. Cameron, P.J., Praeger, C.E.: Block-transitive t-designs, II: large t. In: De Clerck,

F., et al. (eds.) Finite Geometry and Combinatorics (Deinze 1992). London Math.
Soc. Lecture Note Series, vol. 191, pp. 103–119. Cambridge Univ. Press, Cambridge
(1993)

11. Cameron, P.J., van Lint, J.H.: Designs, Graphs, Codes and their Links. Cambridge
Univ. Press, Cambridge (1991)

12. Carmichael, R.D.: Introduction to the Theory of Groups of Finite Order, Ginn,
Boston (1937); Reprint: Dover Publications, New York (1956)

13. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn.
CRC Press, Boca Raton (2006)

14. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn.
Springer, Heidelberg (1998)

15. Delandtsheer, A.: Finite flag-transitive linear spaces with alternating socle. In:
Betten, A., et al. (eds.) Algebraic Combinatorics and Applications, Proc. Euroconf.
(Gößweinstein 1999), pp. 79–88. Springer, Berlin (2001)

16. Dembowski, P.: Finite Geometries. Springer, Heidelberg (1968); (Reprint 1997)
17. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, Heidelberg (1996)
18. Fisher, R.A.: An examination of the different possible solutions of a problem in

incomplete blocks. Ann. Eugenics 10, 52–75 (1940)
19. Gorenstein, D.: Finite Simple Groups. An Introduction to Their Classification.

Plenum Publishing Corp., New York (1982)
20. Hall Jr., M.: Combinatorial Theory, 2nd edn. J. Wiley, New York (1986)
21. Higman, D.G., McLaughlin, J.E.: Geometric ABA-groups. Illinois J. Math. 5, 382–

397 (1961)
22. Huber, M.: Classification of flag-transitive Steiner quadruple systems. J. Combin.

Theory, Series A 94, 180–190 (2001)
23. Huber, M.: The classification of flag-transitive Steiner 3-designs. Adv. Geom. 5,

195–221 (2005)
24. Huber, M.: On Highly Symmetric Combinatorial Designs, Habilitationsschrift,

Univ. Tübingen (2005), Shaker Verlag, Aachen (2006)
25. Huber, M.: The classification of flag-transitive Steiner 4-designs. J. Algebr.

Comb. 26, 183–207 (2007)
26. Huber, M.: A census of highly symmetric combinatorial designs. J. Algebr.

Comb. 26, 453–476 (2007)
27. Huber, M.: Coding theory and algebraic combinatorics. In: Woungang, I., et al.

(eds.) Selected Topics in Information and Coding Theory, 33 p. World Scientific,
Singapore (to appear)

28. Huber, M.: Flag-transitive Steiner Designs, Birkhäuser, Basel, Berlin, Boston (to
appear)

29. Huffman, W.C., Pless, V. (eds.): Handbook of Coding Theory, vol. I and II. North-
Holland, Amsterdam (1998)

30. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
Univ. Press, Cambridge (2003)

31. Hughes, D.R., Piper, F.C.: Design Theory. Cambridge Univ. Press, Cambridge
(1985)

32. Kantor, W.M.: k-homogeneous groups. Math. Z. 124, 261–265 (1972)
33. Kantor, W.M.: 2-transitive and flag-transitive designs. In: Jungnickel, D., et al.

(eds.) Coding Theory, Design Theory, Group Theory, Proc. Marshall Hall Conf.
(Burlington, VT, 1990), pp. 13–30. J. Wiley, New York (1993)

26 M. Huber

34. Kaski, P., Österg̊ard, P.R.J.: Classification Algorithms for Codes and Designs.
Springer, Heidelberg (2006)

35. Kleidman, P.B.: The finite flag-transitive linear spaces with an exceptional auto-
morphism group. In: Kramer, E.S., Magliveras, S.S. (eds.) Finite Geometries and
Combinatorial Designs (Lincoln, NE, 1987), vol. 111, pp. 117–136, Contemp. Math.
Amer. Math. Soc., Providence, RI (1990)

36. Liebeck, M.W.: The affine permutation groups of rank three. Proc. London Math.
Soc. 54(3), 477–516 (1987)

37. Liebeck, M.W.: The classification of finite linear spaces with flag-transitive auto-
morphism groups of affine type. J. Combin. Theory, Series A 84, 196–235 (1998)

38. Livingstone, D., Wagner, A.: Transitivity of finite permutation groups on unordered
sets. Math. Z. 90, 393–403 (1965)

39. Lüneburg, H.: Fahnenhomogene Quadrupelsysteme. Math. Z. 89, 82–90 (1965)
40. Pei, D.: Authentication Codes and Combinatorial Designs. CRC Press, Boca Raton

(2006)
41. Ray-Chaudhuri, D.K., Wilson, R.M.: On t-designs. Osaka J. Math. 12, 737–744

(1975)
42. Rota, G.-C.: On the foundations of combinatorial theory I: theory of Möbius func-

tions. Z. Wahrscheinlichkeitsrechnung u. verw. Geb. 2, 340–368 (1964)
43. Saxl, J.: On finite linear spaces with almost simple flag-transitive automorphism

groups. J. Combin. Theory, Series A 100, 322–348 (2002)
44. Stinson, D.R.: Combinatorial Designs: Constructions and Analysis. Springer, Hei-

delberg (2004)
45. Stinson, D.R.: Cryptography, 3rd edn. CRC Press, Boca Raton (2005)
46. Teirlinck, L.: Non-trivial t-designs without repeated blocks exist for all t. Discrete

Math. 65, 301–311 (1987)
47. Tits, J.: Sur les systèmes de Steiner associés aux trois “grands” groupes de Mathieu.

Rendic. Math. 23, 166–184 (1964)
48. Tonchev, V.D.: Combinatorial Configurations: Designs, Codes, Graphs. Longman,

Harlow (1988)
49. Tuan, N.D.: Simple non-trivial designs with an arbitrary automorphism group. J.

Combin. Theory, Series A 100, 403–408 (2002)
50. Wielandt, H.: Finite Permutation Groups. Academic Press, London (1964)

New Spatial Configurations

Harald Gropp

Mühlingstr.19, D-69121 Heidelberg, Germany
d12@ix.urz.uni-heidelberg.de

Abstract. This second paper on constructions of spatial configurations
follows the author’s paper of 1994 [2]. For the first time again new spatial
configurations are constructed, in particular a configuration (338)2, the
smallest known configuration (v8)2, and several configurations (v9)2, in
particular for v = 40 and for v ≥ 43.

1 Introduction and Notation

The most important definitions and notations are repeated here from [2]. For
further details the reader is referred to this paper and to [1] where the connection
to possible applications like radio astronomy and engineering sciences is given.

Definition 1.1. A λ-configuration (vr, bk)λ is a finite incidence structure con-
sisting of a set of points and a set of subsets (called lines) of this set such
that

1. there are v points and b lines,
2. there are k points on each line and r lines through each point,
3. two different points are connected by at most λ lines and two different lines

intersect each other in at most λ points.

For λ = 1 we obtain 1-configurations or just configurations.
For λ = 2 we obtain 2-configurations or spatial configurations.
Analogously to the case of 1-configurations the following multigraph can be

defined.

Definition 1.2. The configuration multigraph of a 2-configuration (vr, bk)2 has
as vertex set the set of v points. There is a double edge between two vertices iff
the two points are not on a common line of the configuration. There is a simple
edge iff the two points are on a unique common line. There is no edge iff the two
points are on exactly two common lines.

Remark 1.3

1. Since the dual structure of a 2-configuration is also a 2-configuration it can
be assumed that b ≥ v.

2. Necessary conditions for the existence of a 2-configuration (vr, bk)2 are
vr = bk and v ≥ 1 + r(k − 1)/2.

3. The configuration multigraph is regular of degree d. d = 2(v− 1)− r(k− 1)
is called the deficiency of the 2-configuration.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 27–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 H. Gropp

In this paper symmetric 2-configurations (i.e. v = b and hence r = k) will be
discussed and denoted by (vk)2 instead of (vk, vk)2.

Concerning the relation of spatial configurations to usual configurations the
reader is referred to an author’s handbook article on configurations [3].

2 New Constructions

The solutions are given as difference triangles where the first row is the base row
and the ith row contains all the sums of i consecutive numbers of the base row.
No number must occur more than twice and v/2 must occur at most once (all
numbers are considered mod (v)). A base block of the 2-configuration is obtained
by taking 0 and the first entry of each row. All blocks are then constructed by
developing this block mod (v), i.e. adding 1 to each element (the second block),
adding 2 (the third block), ... and finally adding v − 1 (the last block).

2.1 k ≤ 7

All existence problems for k ≤ 6 were solved in [2].
For k = 7 all configurations(v7)2 with v ≥ 24 are constructed in [2]. The

nonexistence of a configuration (227)2 is a consequence of the theorem of Bruck-
Ryser-Chowla. Such a configuration would be a biplane (22,7,2) (see any book
on design theory). It is mentioned in a recent paper by Kaski and Österg̊ard [4]
that there is no configuration (237)2.

2.2 k = 8

For k = 8 the following difference triangle, already obtained in [2], implies the
existence of 2-configurations (v8)2 for all v ≥ 34.

5 3 3 1 5 2 2
8 6 4 6 7 4

11 7 9 8 9
12 12 11 10

17 14 13
19 16

21

The following newly constructed triangle yields a 2-configuration (338)2, up
to now the smallest 2-configuration with k = 8.

2 6 4 3 1 1 5
8 10 7 4 2 6

12 13 8 5 7
15 14 9 10

16 15 14
17 20

22

New Spatial Configurations 29

Theorem 2.1 There is a configuration (v8)2 for all v ≥ 33. For 30 ≤ v ≤ 32
the existence is in doubt. There is no configuration (298)2.

2.3 k = 9

2 1 4 6 3 1 5 2
3 5 10 9 4 6 7

7 11 13 10 9 8
13 14 14 15 11

16 15 19 17
17 20 21

22 22
24

The above triangle yields the existence of a configuration (409)2.

3 1 4 2 5 1 10 3
4 5 6 7 6 11 13

8 7 11 8 16 14
10 12 12 18 19

15 13 22 21
16 23 25

26 26
29

This triangle implies the existence of a configuration (439)2.

3 2 1 9 1 6 2 5
5 3 10 10 7 8 7

6 12 11 16 9 13
15 13 17 18 14

16 19 19 23
22 21 24

24 26
29

This triangle yields the existence of a configuration (449)2.

1 5 2 2 8 1 3 3
6 7 4 10 9 4 6

8 9 12 11 12 7
10 17 13 14 15

18 18 16 17
19 21 19

22 24
25

This triangle yields the existence of a configuration (v9)2 for all v ≥ 45.

30 H. Gropp

Theorem 2.2 There is a configuration (v9)2 for v = 37, 38, 40 and all v ≥ 43.
For v = 39, 41, 42 the existence is in doubt.

Remark 2.3 The existence of a configuration (379)2 (a biplane) and a config-
uration (389)2 (a semibiplane) was discussed in [2].

3 The Existence Table of 2-Configurations

In this last section the results are summarized and exhibited in an updated table.
An entry in plain type means that the corresponding configuration exists.
Bold configurations do not exist.
A blank space shows that the existence problem is open.

Deficiency 0 2 4 6 8 10 12 14
k
3 43 53 63 73 83 93 103 113
4 74 84 94 104 114 124 134 144
5 115 125 135 145 155 165 175 185
6 166 176 186 196 206 216 226 236
7 227 237 247 257 267 277 287 297
8 298 338 348 358 368
9 379 389 409 439 449

References

1. Gropp, H.: On Golomb birulers and their applications. Mathematica Slovaca 42,
517–529 (1992)

2. Gropp, H.: On symmetric spatial configurations. Discrete Math. 125, 201–209 (1994)
3. Gropp, H.: Configurations. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Com-

binatorial Designs, 2nd edn., Boca Raton, pp. 352–354 (2007)
4. Kaski, P., Österg̊ard, P.: There exists no symmetric configuration with 33 points

and line size 6. Australasian Journal of Combinatorics 38, 273–277 (2007)

Construction of Large Constant Dimension Codes with
a Prescribed Minimum Distance

Axel Kohnert and Sascha Kurz

Department of Mathematics
University of Bayreuth

95440 Bayreuth
Germany

axel.kohnert@uni-bayreuth.de,
sascha.kurz@uni-bayreuth.de

Abstract. In this paper we construct constant dimension codes with prescribed
minimum distance. There is an increased interest in subspace codes in general
since a paper [13] by Kötter and Kschischang where they gave an application in
network coding. There is also a connection to the theory of designs over finite
fields. We will modify a method of Braun, Kerber and Laue [7] which they used
for the construction of designs over finite fields to construct constant dimension
codes. Using this approach we found many new constant dimension codes with a
larger number of codewords than previously known codes. We finally give a table
of the best constant dimension codes we found.

Keywords: network coding, q-analogue of Steiner systems, subspace codes.

1 Introduction

1.1 Subspace Codes

In [13] R. Kötter and F. R. Kschischang developed the theory of subspace codes for
applications in network coding. We will recapitulate their definitions in a slightly dif-
ferent manner. We denote by L(GF (q)v) the lattice of all subspaces of the space of
dimension v over the finite field with q elements together with the partial order is given
by inclusion. A subspace code C is a subset of L(GF (q)v). If all the subspaces in C
are of the same dimension then C is a constant dimension code.

The subspace distance between two spaces V and W in L(GF (q)v) is defined as

dS(V, W) := dim(V + W)− dim(V ∩W)

which is equal to
dim(V) + dim(W)− 2 dim(V ∩W).

This defines a metric on L(GF (q)v). The minimum (subspace) distance of a sub-
space code C is defined as

DS(C) := min{dS(V, W) : V, W ∈ C and V �= W}.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 31–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 A. Kohnert and S. Kurz

We define now the optimal (subspace) code problem:

(P1) For a given lattice L(GF (q)v) (based on inclusion) fix a minimum
(subspace) distance d and find the maximal number m of subspaces V1, . . . , Vm

in L(GF (q)v) such that the corresponding subspace code C = {V1, . . . , Vm}
has at least minimum distance d.

The following point of view is useful for the study of subspace codes: We first define
the Hamming graph with parameters v and q by taking as vertex-set the words of length
v over the alphabet GF (q) and connecting two vertices u, w by an edge if the minimum
distance between u and w is equal to one. One of the classical problems in coding theory
can then be stated as follows:

(P2) Given the Hamming graph of all words of length v and a minimum
distance d find a maximal number m of words such that the pairwise minimum
distance is at least d.

If we substitute the Hamming graph by the Hasse diagram of L(GF (q)v) (vertices
are the subspaces of GF (q)v and two subspaces are connected by an edge if they are
direct neighbors in the partial order arising from inclusion) the problem (P2) becomes
problem (P1). Both problems are special cases of a packing problem in a graph. If
we start with problem (P2) and use the ’field with one element’ we get problem (P1).
Because of this property we say (P2) is the q−analogue of (P1). This connection is well
known (e.g. [1,17]) and will be useful in the following. Since the publication of the
paper by Kötter and Kschischang the constant dimension codes as the q−analogue of
the constant weight codes were studied in a series of papers [10,12,23].

1.2 q−Analogues of Designs

A t − (v, k, λ) design is a set C of k−element subsets (called blocks) of the set
{1, . . . , v} such that each t−element subset of {1, . . . , v} appears in exactly λ blocks.
The special case of λ = 1 is called a Steiner system.

The same construction which was used to connect problem (P1) to (P2) in the sub-
section above can be used to define the q−analogue of a t-design. A t − (v, k, λ) de-
sign over the finite field GF (q) is a multiset C of k−dimensional subspaces (called
q-blocks) of the v-dimensional vector space GF (q)v such that each t−dimensional
subspace of GF (q)v is a subspace of exactly λ q−blocks.

The connection with the constant dimension codes is given by the following ob-
servation in the case of a q−analogue of a Steiner system: Given a q−analogue of a
t− (v, k, 1) design C we get a constant dimension code of minimum distance 2(k− t+
1). As each t-dimensional space is contained in exactly one k-dimensional subspace
the intersection between two spaces from C is at most (t − 1)−dimensional. There-
fore the minimum distance of C is at least 2(k − t + 1). On the other hand given any
(t − 1)−dimensional subspace V we can find two t−dimensional spaces U, W with
intersection V and then two unique q−blocks containing U and W. The minimum dis-
tance between these q−blocks is 2(k − t + 1).

Construction of Large Constant Dimension Codes 33

q-analogues of designs were introduced by Thomas in 1987 [19]. Later they were
studied in a paper by Braun et al. [7] where the authors constructed the first non-trivial
q−analogue of a 3-design. We will use the methods described in their paper to construct
constant dimension codes.

In later papers by Thomas [20] and Etzion and Schwartz [17] it was shown that there
are severe restrictions on the possible existence of q-analogues of Steiner systems. We
will search for a collection of subspaces satisfying only the conditions given by (P1)
and not for the stronger condition satisfied by a q-analogue of a Steiner system. But in
general the methods described in this paper can also be used for the search for Steiner
systems.

2 Construction of Constant Dimension Codes

In this section we describe how to construct a constant dimension code C using a system
of Diophantine linear equations and inequalities. Due to the definition of the subspace
distance for all V, W ∈ C we have dS(V, W) = 2k − 2dim(V ∩ W) where k is
the dimension of the code. Thus the minimum subspace distance has to be an even
number less or equal to 2k. To construct a constant dimension code of dimension k and
minimum subspace distance 2d we have to find n subspaces {V1, . . . , Vn} of dimension
k such that there is no subspace of dimension k−d+1 contained in two of the selected
k-spaces. We define M as the incidence matrix of the incidence system between the
(k − d + 1)-spaces (labeling the rows of M) and the k-spaces (labeling the columns):

MW,V :=
{

1 if V contains W,
0 otherwise.

Using M we get the description of a constant dimension code as the solution of a
Diophantine system. We denote by s the number of columns of M.

Theorem 1

There is a constant dimension code with m codewords and minimum distance at least
2d if and only if there is a (0/1)−solution x = (x1, . . . , xs)T of the following system
of one equation and a set of inequalities:

s∑
i=1

xi = m (1)

Mx ≤

⎛⎜⎝1
...
1

⎞⎟⎠ . (2)

This set of inequalities has to be read as follows: A solution x has the property that the
product of x with a single row of M is 0 or 1. Otherwise if the inner product of x with
the row labeled by W is larger than one, then the subspace W is contained in more
than one subspaces V . To get the constant dimension code corresponding to a solution
we have to use the (0/1)−vector x as the characteristic vector of a subset of the set

34 A. Kohnert and S. Kurz

of all k−dimensional subspaces of GF (q)v . Theorem 1 is a generalization of the Dio-
phantine system describing the search for a q−analogue of a Steiner system which was
given in [7].

Corollary 1. [7]

There is a q−analogue of a (k − d + 1) − (v, k, 1) design with b blocks if and only if
there is a (0/1)−solution x = (x1, . . . , xs)T of the following system of Diophantine
linear equations:

s∑
i=1

xi = b (3)

Mx =

⎛⎜⎝1
...
1

⎞⎟⎠ . (4)

The size of these problems is given by the number of subspaces in GF (q)v . In general
this number is growing too fast. The number of k-dimensional subspaces of GF (q)v is
given by the q-binomial coefficients:[

v
k

]
q

:=
∏

j=1..k

(1 − qv+1−j)
(1− qj)

.

Already in the smallest case of a 2−analogue of the Fano plane (v = 7, k = 3, d = 2)
the matrix M has 11811 columns and 2667 rows.

3 Constant Dimension Codes with Prescribed Automorphisms

To handle also larger cases we apply the following method. We no longer look for
an arbitrary constant dimension code. We are now only interested in a set of spaces
which have a prescribed group of automorphisms. An automorphism ϕ of set C =
{V1, . . . , Vm} is an element from GL(v, GF (q)) such that C = {ϕ(V1), . . . , ϕ(Vm)}.
We denote by G the group of automorphisms of C, which is a subgroup
of GL(v, GF (q)).

The main advantage of prescribing automorphisms is that the size of the system of
equations is much smaller. The number of variables will be the number of orbits of G
on the k-spaces. The number of equations or inequalities will be the number of orbits
on the (k − d + 1)-spaces. The construction process will then have two steps:

– In a first step the solution of a construction problem is described as a solution of a
Diophantine system of linear equations.

– In a second step the size of the linear system is reduced by prescribing automor-
phisms.

This construction method is a general approach that works for many discrete structures
as designs [3,14], q-analogs of designs [6,7], arcs in projective geometries [8], linear
codes [2,4,5,15] or quantum codes [21].

Construction of Large Constant Dimension Codes 35

The general method is as follows: The matrix M is reduced by adding up columns
(labeled by the k-spaces) corresponding to the orbits of G. Now because of the relation

W subspace of V ⇐⇒ ϕ(W) subspace of ϕ(V) (5)

for any k-space V and (k − d)-space W and any automorphism ϕ ∈ G the rows cor-
responding to lines in an orbit under G are equal. Therefore the redundant rows are
removed from the system of equations and we get a smaller matrix denoted by MG.
The number of rows of MG is then the number of orbits of G on the (k−d+1)-spaces.
The number of columns of MG is the number of orbits of G on the k-spaces. We denote
by ω1, . . . the orbits on the k-spaces and by Ω1, . . . the orbits on the (k−d+1)-spaces.
For an entry of MG we have:

MG
Ωi,ωj

= |{V ∈ ωj : W is a subspace of V }|

where W is a representative of the orbit Ωi of (k − d + 1)-spaces. Because of property
(5) the matrix M is well-defined as the definition of MG

Ωi,ωj
is independent of the rep-

resentative W . Now we can restate the above theorem in a version with the condensed
matrix MG :

Theorem 2

Let G be a subgroup of GL(v, GF (q)). There is a constant dimension code of length
m and minimum distance at least 2d whose group of automorphisms contains G as
a subgroup if, and only if, there is a (0/1)−solution x = (x1, . . .)T of the following
system of one equation and a set of inequalities:∑

i

|ωi|xi = m (6)

MGx ≤

⎛⎜⎝1
...
1

⎞⎟⎠ . (7)

There is one further reduction possible. We are looking for a (0/1)−solution where
each inner product of a row of MG and the vector x is less or equal to 1. We can
remove columns of MG with entries greater than 1. This gives a further reduction of
the size of MG. After this last removal of columns we again check on equal rows and
also on rows containing only entries equal to zero. We remove these all zero rows and
all but one copy of the equal rows.

In order to locate large constant dimension codes with given parameters q, k and 2d
we try do find feasible solutions x = (x1, . . .)T of the system of equations of Theorem
3 for a suitable chosen group G and a suitable chosen length m. Here we remark that
we have the freedom to change equation (6) of Theorem 2 into∑

i

|ωi|xi ≥ m.

For this final step we use some software. Currently we use a variant of an LLL based
solver written by Alfred Wassermann [22] or a program by Johannes Zwanzger [24]

36 A. Kohnert and S. Kurz

which uses some heuristics especially developed for applications in coding theory. The
advantage of the LLL based solver is that we definitely know whether there exist feasi-
ble solutions or not whenever the program runs long enough to terminate. Unfortunately
for the examples of Section 5 this never happens so that practically we could only use
this solver as a heuristic to quickly find feasible solutions.

If we change equation (6) into a target function

f(x) = f(x1, . . .) =
∑

i

|ωi|xi

we obtain a formulation as a binary linear optimization problem. In this case we can
apply the commercial ILOG CPLEX 11.1.0 software for integer linear programs. The
big advantage of this approach is that at every time of the solution process we have
lower bounds, corresponding to a feasible solution with the largest f(x)-value found so
far, and upper bounds on f(x).

We can even reformulate our optimization problem in the language of graph theory.
Here we consider the variable indices i as vertices of a graph G each having weight
|ωi|. The edges of G are implicitely given by inequality (7). Therefore let us denote the
ith row of MG by MG

i,·. Now the inequality MG
i,· ≤ 1 translates into the condition that

the set
Ci :=

{
j : MG

i,j = 1
}

is an independence set in G. To construct the graph G we start with a complete graph and
for each row MG

i,· we delete all edges between vertices in Ci. Now an optimal solution
of the binary linear program corresponds to a maximum weight clique in G. Again there
exist heuristics and exact algorithms to determine maximum weight cliques in graphs.
An available software package for this purpose is e.g. CLIQUER [16].

This approach allows to use clique bounds from algebraic graph theory to obtain
upper bounds on the target function f(x). In the case where we are able to locate large
independent sets in G which are not subsets of the Ci we can use them to add further
inequalities to (7). If those independent sets are large enough and not too many then
a solver for integer linear programs highly benefits from the corresponding additional
inequalities.

For theoretical upper bounds and practical reasons how to quickly or exhaustively
locate solutions of our system of Theorem 2 it is very useful to have different formula-
tions of our problem to be able to apply different solvers.

3.1 Example

We start with the space GF (2)7. We now describe the construction of a subspace code
with 304 codewords and constant dimension equal to 3. This code will have minimum
subspace distance 4. The matrix M is the incidence matrix between the 3−dimensional
subspaces of GF (2)7 and the 2−dimensional subspaces. Without further reductions

this matrix has

[
7
3

]
2

= 11811 columns and

[
7
2

]
2

= 2667 rows. We prescribe now a

group G of automorphisms generated by a single element:

Construction of Large Constant Dimension Codes 37

G :=

〈
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1 1 1 1
1 1 1 1

1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
〉

.

This group G has 567 orbits on the 3-spaces and 129 orbits on the 2-spaces. Using
Theorem 3 we can formulate the search for a large constant dimension code as a binary
linear maximization problem having 129 constraints and 567 binary variables. After a
presolving step, automatically performed by the ILOG CPLEX software, there remain
only 477 binary variables and 126 constraints with 3306 nonzero coefficients.

After some minutes the software found a (0/1)−solution with 16 variables equal to
one. Taking the union of the corresponding 16 orbits on the 3-spaces of GF (2)7 we get
a constant dimension code with 304 codewords having minimum distance 4. Previously
known was a code with 289 codewords obtained from a construction using rank-metric
codes ([18] p.28) and another code consisting of 294 subspaces discovered by A. Vardy
(private email communication).

In general it is difficult to construct the condensed matrix MG for an arbitrary group
and larger parameters v and k as the number of subspaces given by the q-binomial coef-

ficient

[
v
k

]
q

grows very fast and it becomes difficult to compute all the orbits necessary

for the computation of MG. In the following section we give a method to get a similar
matrix in special cases.

4 Using Singer Cycles

A special case of the above method is the use of a Singer cycle. We use for the reduction
a Singer subgroup of GL(v, GF (q)) which acts transitively on the one-dimensional
subspaces of GF (q)v . Singer cycles have been used in many cases for the construction
of interesting geometric objects [9]. We will now describe a method to construct a set
C of k-subspaces of GF (q)v with the following two special properties:

1. C has the Singer subgroup as a subgroup of its group of automorphisms.
2. The dimension of the intersection of two spaces from C is at most one.

Of course such a set C is a constant dimension subspace code of minimum distance
2(k−1). This is a special case of the situation of Theorem 3. We now fix one generator
g ∈ GL(v, GF (q)) of a Singer subgroup G and a one-dimensional subspace V of
GF (q)v. As G acts transitively on the one-dimensional subspaces we can label any

one-dimensional subspace W by the unique exponent i between 0 and l :=
[
v
1

]
q

− 1

with the property that W = giV. Given a k-space U we can describe it by the set of
one-dimensional (i.e. numbers between 0 and l) subspaces contained in U . Given such
a description of a k-space it is now easy to get all the spaces building the orbit under

38 A. Kohnert and S. Kurz

the Singer subgroup G. Adding one to each number results in the complete orbit by
performing it l times.

Example 1. q = 2, v = 5, k = 2

A two-dimensional binary subspace contains three one-dimensional subspaces. We get
a two-dimensional space by taking the two one-dimensional spaces labeled {0, 1} and
the third one given by the linear combination of these two will have a certain number, in
this example {14}. Therefore we have a two dimensional space described by the three
numbers {0, 1, 14}. To get the complete orbit under the Singer subgroup we simply have
to increase the numbers by one for each multiplication by the generator g of the Singer
subgroup. The orbit length of the Singer subgroup is 31 and the orbit is built by the 31
sets: {0, 1, 14}, {1, 2, 15}, . . . , {16, 17, 30}, {0, 17, 18}, . . . {12, 29, 30}, {0, 13, 30}.

To describe the different orbits of the Singer subgroup we build the following set of
pairwise distances:

Let s be the number of one-dimensional subspaces in k-space. Let {v1, . . . , vs} ⊂
{0, 1, . . . , l} be the set of s numbers describing a fixed k-space U . Denote by d{i,j}
the distance between the two numbers vi and vj modulo the length of the Singer cycle.
d{i,j} is a number between 1 and l/2. We define the multiset DU := {d{i,j} : 1 ≤ i <
j ≤ s}. We call DU the distance distribution of the subspace U . All the spaces in an
orbit of a Singer subgroup have the same distance distribution and on the other hand
different orbits have different distance distribution. We therefore also say that DU is the
distance distribution of the orbit.

We use these distance distribution to label the different orbits of the Singer subgroup
of the k-spaces. The first observation is:

Lemma 1. A Singer orbit as a subspace code

An orbit C = {V0, . . . , Vl} of a Singer subgroup on the k-subspaces of GF (q)v is a
subspace code of minimum distance 2(k − 1) if and only if the distance distribution of
the orbit has no repeated numbers.

Proof. We have to show that the intersection of any pair of spaces in C has at most one
one-dimensional space in common. Having no repeated entry in the distance distribu-
tion means that a pair of numbers (i.e. pair of one-dimensional subspaces) in a q−block
b of C can not be built again by shifting the numbers in b using the operation of the
Singer subgroup on b.

The same is true if we want to construct a subspace code by combining several orbits
of the Singer subgroup. We have to check that the intersection between two spaces is at
most one-dimensional. For this we define the matrix S, whose columns are labeled by
the orbits Ωj of the Singer subgroup on the k-dimensional subspaces of GF (q)v and the
rows are labeled by the possible numbers i ∈ {0, . . . , l/2} in the distance distribution
of the k-spaces. Denoting by DΩj the distance distribution of the j−th orbit, we define
an entry of the matrix S by

Si,Ωj :=
{

1 if i ∈ DΩj

0 otherwise.
.

Construction of Large Constant Dimension Codes 39

Using this matrix S we have the following characterization of constant dimension codes
with prescribed automorphisms:

Theorem 3

There is a constant dimension code C with n · (l+1) codewords and minimum distance
at least 2(k − 1) whose group of automorphisms contains the Singer subgroup as a
subgroup if and only if there is a (0/1)−solution x = (x1, . . .)T of the following system
of one equation and a set of inequalities:∑

i

xi = n (8)

Sx ≤

⎛⎜⎝1
...
1

⎞⎟⎠ . (9)

This is the final system of one Diophantine linear equation together with l/2 + 1 in-
equalities which we successfully solved in several cases.

5 Results

As mentioned in the introduction there is an increased interest on constant dimension
codes with a large number of codewords for a given minimum subspace distance. There
are (very) recent ArXiV-preprints [10,11,18] giving some constructions for those codes.

Here we restrict ourselves on the binary field q = 2 and dimension k = 3 and
minimum subspace distance dS = 4.

Using the approach described in Section 4 it was possible to construct constant di-
mension codes using the Singer cycle with the following parameters. We denote by n
the number of orbits used to build a solution, by dS we denote the minimum space
distance of the corresponding constant dimension code:

n = number total number best
v k of used orbits of orbits number of codewords known dS = 2d

6 3 1 19 1 · 63 = 63 71[18] 4
7 3 2 93 2 · 127 = 254 294 4
8 3 5 381 5 · 255 = 1275∗ 1164[18] 4
9 3 11 1542 11 · 511 = 5621∗ 4657[18] 4
10 3 21 6205 21 · 1023 = 21483∗ 18631[18] 4
11 3 39 24893 39 · 2047 = 79833∗ 74531[18] 4
12 3 77 99718 77 · 4095 = 315315∗ 298139[18] 4
13 3 141 399165 141 · 8191 = 1154931 1192587[18] 4
14 3 255 1597245 255 · 16383 = 4177665 4770411[18] 4

In [11] the authors defined the number Aq(v, dS , k) as the maximal number of code-
words in a constant dimension code of minimum distance dS . They derived lower and
upper bounds. We have implemented the construction method described in [18] to ob-
tain the resulting code sizes which give the lower bounds for Aq(v, dS , k) for v ≥ 9.

40 A. Kohnert and S. Kurz

In the above table we marked codes which improved the lower bounds on Aq(v, dS , k)
with an ∗. We would like to remark that for 6 ≤ v ≤ 8 our results are optimal for the
Singer cycle as a subgroup of the group of automorphisms (using the formulation as a
binary linear program). So far, for v = 9 a code size of n = 12 is theoretically possible.
(In this case the corresponding binary linear program was not solved to optimality.)

Since for v = 6, 7 the method using the Singer cycle was not capable of beating
the best known constant dimension code we tried the more general approach described
in Section 3. In both cases we improved the cardinality of the best known constant
dimension codes as shown in this small table:

v k number of codewords best known dS = 2d

6 3 77 71[18] 4
7 3 304 294 4

For v = 6 even the original incidence matrix M or MGwhere G is the identity group
results in only 1395 binary variables and 651 constraints having 9765 nonzero entries.
Using the ILOG CPLEX 11.1.0 solver directly on this problem yields a constant dimen-
sion code of cardinality n = 77 which beats the example of [10,18] by 6. The best known
upper bound in this case is given by 81, where as the upper bound given by the linear
relaxation is give by 93. Marcus Grassl (private communication) also found codes of
cardinality n = 77 using some heuristics together with the CLIQUER software [16].

As mentioned in Example 3.1 the original incidence matrix M is quite large. Here
the direct approach has not led to any improvements. Although in general it is difficult
to construct the condensed matrix MG for an arbitrary group and larger parameters we
were able to conquer the difficulties for v = 7, k = 3, dS = 4 and some groups. The
group resulting in the code having 304 three-dimensional subspaces of GF (2)7 such
that the intersection of two codewords has dimension at most one was already given in
Example 3.1. We have tried several groups before ending up with this specific group.
More details can be shown using the following diagram:

order 3

43,903,3951

304−381

order 7

304−381

19,381,1695

identity

127,2667,11811

304−381

Singer

254
1,21,93

0.1 sec

order 3

47,897,3961

263−381

order 2

93−105

order 4

51,855,34557,129,567

304
35,565,2301

order 12

19,289,1161

order 9

15,301,1317

282−381

order 21

order 63

3,43,189

273 86

93 86−99

95,1675,6851

2.4 sec

2.7 h

7.2 sec

1 h

order 6

Construction of Large Constant Dimension Codes 41

This picture shows part of the subgroup lattice of the automorphism group
PGL(7, 2) of the L(GF (2)7). It only shows cyclic groups and in the top row we give
the order of the group. In the second row we give the number of orbits on the points,
lines and planes. In the third row of each entry we give the size lb of a constant dimen-
sion6 code and the best found upper bound ub in the format lb − ub. As described in
Section 3 for a given group our problem corresponds to several versions of feasibility
or optimization problems. To obtain the lower bounds we have used the LLL based
algorithm, the coding theoretic motivated heuristic and the ILOG CPLEX solver for in-
teger linear programs. The upper bounds were obtained by the CPLEX solver stopping
the solution process after a reasonable time. Whenever the lower and the upper bound
meet we have written only one number in bold face. In each of these cases we give the
necessary computation time to prove optimality in the forth row.

As we can split orbits if we move to a subgroup we can translate a solution found for
a group G into a solution for a subgroup of G. E.g. for the groups of order smaller than
21 we did not find codes of size 304 directly. This fact enables us to perform a restricted
search in systems corresponding to subgroups by only considering solutions which are
in some sense near to such a translated solution. We have tried this for the subgroups
of the group of order 21 - unfortunately without success.

We would like to remark that solving the linear relaxation can prevent other heuris-
tics from searching for good solutions where no good solutions can exist. E.g. we can
calculate in a second that every code in the case of the third group in the third row can
contain at most 105 codewords. Since we know better examples we can skip calcula-
tions in this group and all groups which do contain this group as a subgroup.

Finally we draw the conclusion that following the approach described in Section 3
it is indeed possible to construct good constant dimension codes for given minimum
subspace distance. Prescribing the Singer cycle as a subgroup of the automorphism
group has some computational advantages. The resulting codes are quite competitive
for v ≥ 8. The discovered constant dimension codes for v = 6, 7 show that it pays off
to put some effort in the calculation of the condensed matrix MG for other groups.

References

1. Ahlswede, R., Aydinian, H.K., Khachatrian, L.H.: On perfect codes and related concepts.
Des. Codes Cryptography 22(3), 221–237 (2001)

2. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.: Error-
correcting linear codes. Classification by isometry and applications. With CD-ROM. In: Al-
gorithms and Computation in Mathematics 18, p. xxix, 798. Springer, Berlin (2006)

3. Betten, A., Kerber, A., Kohnert, A., Laue, R., Wassermann, A.: The discovery of simple 7-
designs with automorphism group PΓ L(2,32). In: Giusti, M., Cohen, G., Mora, T. (eds.)
AAECC 1995. LNCS, vol. 948, pp. 131–145. Springer, Heidelberg (1995)

4. Braun, M.: Construction of linear codes with large minimum distance. IEEE Transactions on
Information Theory 50(8), 1687–1691 (2004)

5. Braun, M., Kohnert, A., Wassermann, A.: Optimal linear codes from matrix groups. IEEE
Transactions on Information Theory 51(12), 4247–4251 (2005)

6. Braun, M.: Some new designs over finite fields. Bayreuther Math. Schr. 74, 58–68 (2005)
7. Braun, M., Kerber, A., Laue, R.: Systematic construction of q-analogs of t-(v, k, λ)-designs.

Des. Codes Cryptography 34(1), 55–70 (2005)

42 A. Kohnert and S. Kurz

8. Braun, M., Kohnert, A., Wassermann, A.: Construction of (n, r)-arcs in PG(2, q). Innov.
Incidence Geom. 1, 133–141 (2005)

9. Drudge, K.: On the orbits of Singer groups and their subgroups. Electronic Journal
Comb. 9(1), 10 p. (2002)

10. Etzion, T., Silberstein, N.: Construction of error-correcting codes for random network coding
(submitted, 2008) (in arXiv 0805.3528)

11. Etzion, T., Vardy, A.: Error-Correcting codes in projective space. In: ISIT Proceedings, 5 p.
(2008)

12. Gadouleau, M., Yan, Z.: Constant-rank codes and their connection to constant-dimension
codes (submitted, 2008) (in arXiv 0803.2262)

13. Kötter, R., Kschischang, F.: Coding for errors and erasures in random network coding. IEEE
Transactions on Information Theory 54(8), 3579–3391 (2008)

14. Kramer, E.S., Mesner, D.M.: t-designs on hypergraphs. Discrete Math. 15, 263–296 (1976)
15. Maruta, T., Shinohara, M., Takenaka, M.: Constructing linear codes from some orbits of

projectivities. Discrete Math. 308(5-6), 832–841 (2008)
16. Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0. Technical Report T48,

Communications Laboratory, Helsinki University of Technology, Espoo, Finland (2003)
17. Schwartz, M., Etzion, T.: Codes and anticodes in the Grassman graph. J. Comb. Theory, Ser.

A 97(1), 27–42 (2002)
18. Silberstein, N.: Coding theory in projective space. Ph.D. proposal (2008) (in arXiv

0805.3528)
19. Thomas, S.: Designs over finite fields. Geom. Dedicata 24, 237–242 (1987)
20. Thomas, S.: Designs and partial geometries over finite fields. Geom. Dedicata 63(3), 247–

253 (1996)
21. Tonchev, V.D.: Quantum codes from caps. Discrete Math. (to appear, 2008)
22. Wassermann, A.: Lattice point enumeration and applications. Bayreuther Math. Schr. 73,

1–114 (2006)
23. Xia, S.-T., Fu, F.-W.: Johnson type bounds on constant dimension codes (submitted, 2007)

(in arXiv 0709.1074)
24. Zwanzger, J.: A heuristic algorithm for the construction of good linear codes. IEEE Transac-

tions on Information Theory 54(5), 2388–2392 (2008)

Invited Talk:
Embedding Classical into Quantum

Computation

Richard Jozsa

Department of Computer Science,
University of Bristol,

Merchant Venturers Building,
Bristol BS8 1UB U.K.

Abstract. We describe a simple formalism for generating classes of
quantum circuits that are classically efficiently simulatable and show
that the efficient simulation of Clifford circuits (Gottesman-Knill theo-
rem) and of matchgate circuits (Valiant’s theorem) appear as two special
cases. Viewing these simulatable classes as subsets of the space of all
quantum computations, we may consider minimal extensions that suffice
to regain full quantum computational power, which provides an approach
to exploring the efficacy of quantum over classical computation.

1 Introduction

The characterisation of the possibilities and limitations of quantum computa-
tional power is one of the most interesting issues in quantum information science.
All of the early and best known quantum algorithms [1] that exhibit an expo-
nential time speed-up over any known classical algorithm for the task, utilize
properties of the quantum Fourier transform modulo N . One may then develop
generalisations of these insights, studying Fourier transforms over further abelian
and non-abelian groups and invent associated computational tasks such as the
hidden subgroup problem and various kinds of hidden shift problems. Around
the years of 1997 and 1998 Thomas Beth, with memorable characteristic exu-
berance, was one of the earliest workers in the subject to recognise the potential
possibilities of the abstract formalism of Fourier transforms for novel quantum
algorithms, and take up this line of development which has now become an
important cornerstone in our understanding.

Despite this seminal development it is probably fair to say that apart from
the Fourier transform formalism, no other similarly fruitful quantum algorith-
mic primitive for exponential speed-up has been identified. This motivates a
need for alternative approaches to exploring the efficacy of quantum vs. classi-
cal algorithms. One interesting such approach is the identification and study of
classes of quantum computations that are classically efficiently simulatable i.e.
processes which although quantum, do not offer computational benefit. Indeed
the relation of classical to quantum computation that emerges is intriguingly rich

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 43–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 R. Jozsa

and multi-faceted – (sub-) classical computation can be embedded into quan-
tum computation in many inequivalent ways. Given any such class of simulatable
quantum computations we may ask: what kind of added (minimal) ingredient
suffices to restore full quantum computational power? In a sense, any such in-
gredient may be viewed as an “essence” of quantum computational power, albeit
relative to a given substrate of simulatable processes. In this talk we will outline
a formalism for providing simulatable classes of quantum circuits and discuss
two examples – the Gottesman-Knill theorem for Clifford circuits and Valiant’s
theorem for simulation of matchgate circuits. These examples will show that
the added ingredient above can be strikingly trivial, especially if thought of as
a competitor to the oft-quoted blanket attribution of quantum computational
power to the enigmatic phenomenon of entanglement.

2 Classically Simulatable Quantum Computations

We focus on comparing and contrasting two theorems of classical simulation viz.
the Gottesman-Knill theorem for Clifford circuits [1,9] and Valiant’s theorem
[4,2] for simulation of matchgate circuits. At first sight these appear to be very
different in their content and provenance but we will outline a proof method
that reveals a formal similarity between the two results.

The Gottesman-Knill (GK) theorem arose out of the development of the so-
called stabiliser formalism for the theory of quantum error correction [1]. Let
H denote the 1-qubit Hadamard gate, P the 1-qubit phase gate P = diag(1, i)
and CZ the 2-qubit controlled−Z gate CZ = diag(1, 1, 1,−1). These gates and
arbitrary circuits of them on n qubits are called Clifford operations on n qubits.
Our adopted version (slightly modified from the original, c.f. also [3]) of the GK
theorem is the following.

Theorem 1. Consider any uniform (hence poly sized) quantum circuit family
comprising the gates H, P and CZ (i.e. a Clifford circuit) such that:
(i) the input state is any product state;
(ii) the output is a final Z measurement on any single qubit line.
Then the output may be classically efficiently simulated.

More formally our notion of efficient classical simulation is the following: given
a description of the circuit on n qubit lines, the output probabilities may be
classically computed to k digits in poly(n, k) time.

Next we introduce the notion of “matchgate” and Valiant’s classical simula-
tion theorem [4], which arose originally from considerations of counting perfect
matchings in graphs.

A matchgate [4,2] is defined to be any 2-qubit gate G(A, B) of the form (in
the computational basis):

G(A, B) =

⎛⎜⎜⎝
p 0 0 q
0 w x 0
0 y z 0
r 0 0 s

⎞⎟⎟⎠ A =
(

p q
r s

)
B =

(
w x
y z

)
(1)

Invited Talk: Embedding Classical into Quantum Computation 45

where A and B are both in SU(2) or both in U(2) with the same determinant.
Thus the action of G(A, B) amounts to A acting in the even parity subspace
(spanned by |00〉 and |11〉) and B acting in the odd parity subspace (spanned
by |01〉 and |10〉).

Our version of Valiant’s theorem (again slightly different from the original
version) is the following.

Theorem 2. Consider any uniform (hence poly-sized) quantum circuit family
comprising only G(A, B) gates such that:
(i) the G(A, B) gates act on nearest neighbour (n.n.) lines only;
(ii) the input state is any product state;
(iii) the output is a final measurement in the computational basis on any single
line.
Then the output may be classically efficiently simulated.

Let us now return to the GK theorem and its proof ingredients. The essential
property of the class of gates used, i.e. Clifford gates, is the following [9]: if C is
any n-qubit Clifford operation and P1⊗ . . .⊗Pn is any product of Pauli matrices
(i.e. Pi = I, X, Y or Z for each i) then the conjugate C†(P1 ⊗ . . . ⊗ Pn)C =
P ′

1⊗ . . .⊗P ′
n is again a product of Pauli operations. Stated more formally, if Pn

is the group generated by all such Pauli products on n qubits then the n-qubit
Clifford group is the normaliser of Pn in the unitary group U(2n).

A standard proof (c.f. [1]) of the GK theorem (with a computational basis
input) proceeds by updating the stabiliser description of the state through the
course of the computation and we get a description of the final state in addition
to the output probabilities. We adopt here a different approach [3]. Suppose
(wlog) that the final measurement is on the first line, having outputs 0,1 with
probabilities p0, p1 respectively. Then the difference p0 − p1 is given by the ex-
pectation value of Z1 = Z ⊗ I ⊗ . . .⊗ I in the final state C |ψ0〉:

p0 − p1 = 〈ψ0|C†Z1C |ψ0〉 (2)

This computation suffices to simulate the output (as also p0 + p1 = 1). Now
Z1 is clearly a product of Pauli operations so C†Z1C also has the product form
P1⊗ . . .⊗Pn for Pauli operations Pi (whose identity can be determined in linear
time by an update rule for successive conjugations by the elementary gates in
the circuit). Hence if |ψ0〉 = |a1〉 . . . |an〉 is any product state we get

p0 − p1 =
n∏

k=1

〈ak|Pk |ak〉 (3)

which can clearly be calculated in time O(n) (as a product of n terms of fixed
size) giving an efficient (linear time) simulation of the Clifford circuit.

The essential ingredients of the above proof are the following.
(SIM1): we have a set Sn of n-qubit operations such that 〈ψ0|S |ψ0〉 can be
computed in poly(n) time for any S ∈ Sn and any allowed input state |ψ0〉;
(For the GK theorem Sn is the n-qubit Pauli group Pn.)

46 R. Jozsa

(SIM2): we have a class Kn of unitary operations such that K†SK ∈ Sn for all
S ∈ Sn and K ∈ Kn.
(For the GK theorem Kn is the Clifford group Cn.)

Then if Z1 is in Sn for all n (or can be expressed in suitably simple terms using
elements of Sn, c.f. later) then it follows (just as in the above outlined proof)
that circuits of gates from Kn, with input state |ψ0〉 and output measurement
of Z on the first line, can be classically efficiently simulated.

Note that this simulation result, resting on (SIM1) and (SIM2) does not ac-
tually require any special group (or other algebraic) structure on Sn or Kn. For
example, the fact that Pn is a group is not needed at all in our proof of the
GK theorem in contrast to the usual proof resting on the stabiliser formalism,
depending heavily on the subgroup structure of Pn.

Turning now to matchgates we will show that Valiant’s theorem can be un-
derstood as just another example of the above formalism with a suitably clever
choice of Sn and Kn. For n qubits we introduce the 2n Pauli product operators
(omitting tensor product symbols ⊗ throughout):

c1 = X I . . . I c3 = Z X I . . . I · · · c2k−1 = Z . . . Z X I . . . I
c2 = Y I . . . I c4 = Z Y I . . . I · · · c2k = Z . . . Z Y I . . . I

(4)

where X and Y are in the kth slot for c2k−1 and c2k, and k ranges from 1 to n.
For Sn we take the linear span of c1, . . . , c2n which is a 2n-dimensional vector
space (in contrast to the group Pn). Since each cj is a product operator and a
general vector v ∈ Sn is a linear combination of only 2n of them, it is clear that
〈ψ0| v |ψ0〉 is poly(n)-time computable if |ψ0〉 is a product state i.e. (SIM1) is
satisfied.

Next we can verify by straightforward direct calculation that if U is any n.n.
G(A, B) gate then U †cjU ∈ Sn for all j so U †vU ∈ Sn for any v ∈ Sn i.e.
property (SIM2) is satisfied. More explicitly note that if U is a n.n. G(A, B)
gate, it applies to two consecutive qubit lines so (from eq. (4)) the part of cj

that it “sees” can only be one of

α1 = ZZ α2 = ZX α3 = ZY α4 = XI α5 = Y I or α6 = II. (5)

Then a straightforward calculation with 4 by 4 matrices shows that for each i,
G(A, B)†αiG(A, B) always returns a linear combination of allowable αi’s and
property (SIM2) follows immediately.

It is instructive to note that if we attempt to apply a G(A, B) gate on not
nearest-neighbour qubit lines then in addition to the six terms in eq. (5) we
can get a further possibility, namely α7 = ZI on the chosen two lines. But now
we can check that G(A, B)†α7G(A, B) does not generally lie in the span of the
allowed Pauli products at those lines, and property (SIM2) is violated. This
give a way of understanding the curious n.n. requirement for G(A, B) actions
in theorem 2, which has no analogue in the GK theorem (as Pn is defined by a
uniformly local product requirement).

With properties (SIM1) and (SIM2) we can say that if M is the total operation
of any n.n. matchgate circuit on n lines then 〈ψ0|M †DM |ψ0〉 is poly(n)-time

Invited Talk: Embedding Classical into Quantum Computation 47

computable for any D ∈ Sn. To complete our simulation theorem we want to
set D = Zk = I . . . I ZI . . . I (i.e. Z on the kth line) to obtain p0 − p1 for a
measurement on the kth line. In the GK theorem with Sn = Pn we had Zk ∈ Pn

directly. In the present case we do not have Zk ∈ Sn but looking at eq. (4) we
see that Z1 = −ic1c2 and generally Zk = −ic2k−1c2k. Then, for example,

M †Z1M = −iM †c1c2M = −i(M †c1M)(M †c2M) (6)

and each bracket in the last expression is a linear combination of cj ’s. Thus
p0−p1 = 〈ψ0|M †Z1M |ψ0〉 has the form −i

∑
ij aibj 〈ψ0| cicj |ψ0〉. Since the ci’s

are product operators, so are the O(n2) product terms cicj in the final sum.
Hence p0 − p1 is again poly(n)-time computable but now we have O(n2) terms
instead of the previous O(n) terms in the sum. This completes a proof outline
of Valiant’s theorem 2.

3 Extensions of Simulatable Circuits

We may now view Clifford circuits and matchgate circuits as two “islands” of
quantum processes in the space of all quantum computations, that offer no com-
putational time benefit over classical computations. As such, it is interesting to
try to characterise their relationship to the whole and one approach is to consider
what (minimal) extra ingredient suffices to expand their computational power
to regain full universal efficient quantum computation.

In the case of Clifford circuits it is well known (e.g. see [1]) that the inclusion
of the phase gate

√
P = diag(1, eiπ/4) suffices, and more generally, (using a

result of Shi [10], noting that CNOT is a Clifford operation), the inclusion of
essentially any single extra non-trivial 1-qubit gate will suffice.

For the case of matchgate circuits we have the following intriguing result.

Theorem 3. Let Cn be any uniform family of quantum circuits with output
given by a Z basis measurement on the first line. Then Cn may be simulated by
a circuit of G(A, B) gates acting on n.n. or next n.n. lines only (i.e. on line
pairs at most distance 2 apart) with at most a constant factor increase in the
size of the circuit.

A proof of this theorem may be found in [2] and here we just make a few
remarks. Comparing theorems 2 and 3 we see that the gap between classical and
full quantum computational power can be bridged by a very modest use of a
seemingly innocuous resource viz. the ability of matchgates to act on next n.n. –
instead of just n.n. – qubit lines. Equivalently this may be characterised by use of
the SWAP operation (on n.n. lines) in a very constrained context where ladders
of consecutive SWAP s (which would allow 2-qubit gates to act on arbitrarily
distant lines) are not even allowed. From this perspective, the power of quantum
(over classical) computation is attributable to the mere inclusion of such isolated
single SWAP gates. The result becomes perhaps even more striking if we note
that SWAP itself is very close to being expressible in the allowed G(A, B)

48 R. Jozsa

form. Indeed SWAP = G(I, X) and fails only through a mere minus sign in
detX = −det I. Thus if we drop the detA = detB condition in eq. (1), then
the resulting G(A, B) gates acting on n.n. lines become efficiently universal for
quantum computation.

Is it conceivable that the passage from n.n. to next-n.n. use of G(A, B) gates
may be achieved while maintaining classical simulatability? We may argue on
formal complexity theoretic grounds that this is highly implausible. Indeed it
is shown in [2] that the classical complexity classes NP and PP (cf. [7]) would
then become classically poly-time decideable i.e. we would get P=NP=PP (as
well as P=BQP). Thus an extra supra-classical computational power must be
associated to the single distance extension of the range of n.n. 2-qubit G(A, B)
gates in general matchgate circuits, if these classical computational complexity
classes are to be unequal.

4 Concluding Remarks

From the viewpoint of (SIM1) and (SIM2) we see a formal similarity between the
GK theorem and Valiant’s theorem although these results arose historically from
very different considerations. This suggests that we might be able to construct
further interesting classes of classically simulatable circuits by simply taking
other choices of Sn and identifying a suitable associated Kn. However “interest-
ing” pairs (Sn,Kn) appear to be difficult to invent – the known examples arising
as outcomes of some prior elaborate underlying mathematical structures. In the
GK case we have the identification of the Clifford group via a lengthy argument
with group theoretic ingredients (see e.g. appendix in [11]) applied to the Pauli
group Pn which is a well known structure in the subject.

However in the case of Valiant’s theorem, how might we initially come upon
this result, and guess the choice for Sn that we used (i.e. eq. (4) and its linear
span)!? Actually the operators in eq. (4) are well known in physics – they com-
prise the so-called Jordan-Wigner representation [8] that appears in the theory
of non-interacting fermions. The connection between Valiant’s theorem and sim-
ulation of free fermions was recognised by Knill [5] and Terhal and DiVincenzo
[6] and our proof of Valiant’s theorem above is a re-writing of this connection.
A more formal mathematical treatment (albeit without reference to fermions)
based on abstract properties of the mathematical structure of Clifford algebras
is given in [2] which also clarifies the appearance of matchgates as normalisers of
the linear part of the Clifford algebra, leading to property (SIM2). We will not
elaborate here on these further ingredients (detailed in [2]) except to point out
that again here, we have a significant underlying theory leading to the choice
of Sn and the identification of its associated normalisers Kn. Perhaps an intu-
itive signal feature of such an underlying theory is some construction that could
potentially produce an exponentially large structure but surprisingly remains
only polynomially complex. In the case of the Pauli group Pn, conjugation by
arbitrary V ∈ U(2n) can generate general n-qubit matrices for which the calcu-
lation of the expectation value in eq. (2) becomes exponentially inefficient. But

Invited Talk: Embedding Classical into Quantum Computation 49

the special case of V being Clifford guarantees a polynomial simplicity via the
preserved product structure. In the case of the ci’s of eq. (4), conjugation by an
arbitrary V ∈ U(2n) leads to a general element of the full Clifford algebra gen-
erated by the the ci’s [2] – a space of exponential dimension 22n – but again the
special case of n.n. matchgates (associated to a theory of quadratic hamiltonians
[2]) guarantees that the conjugates remain in the polynomially small subspace
of linear elements of the full Clifford algebra. It is an interesting open problem
to exhibit further examples of such simplifications and of our formalism (SIM1),
(SIM2), that may already exist within the literature of the theory of some yet
more general kind of algebraic structure.

Acknowledgements. This work was supported in parts by the EC networks
QICS and QAP and by EPSRC QIP-IRC. The author also acknowledges
Akimasa Miyake for the collaborative work [2] which is related closely to the
discussion in this paper.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

2. Jozsa, R., Miyake, A.: Appearing as Proc. R. Soc (Lond.) A 464, 3089–3106 (2008);
arXiv:quant-ph/0804.4050

3. Clark, S., Jozsa, R., Linden, N.: Quant. Inf. Comp. 8, 106–126 (2008)
4. Valiant, L.: SIAM J. Computing 31(4), 1229 (2002)
5. Knill, E.: (2001); arXiv:quant-ph/0108033
6. Terhal, B., DiVincenzo, D.: Phys. Rev. A 65, 032325 (2002)
7. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
8. Jordan, P., Wigner, E.: Zeitschrift für Physik. 47, 631 (1928)
9. Gottesman, D.: Stabilizer Codes and Quantum Error Correction, PhD thesis, Cal-

ifornia Institute of Technology, Pasadena, CA (1997)
10. Shi, Y.: Quant. Inf. Comp. 3, 84-92 (2003)
11. Clark, S.: J. Phys. A: Math. Gen. 39, 2701–2721 (2006)

A Criterion for Attaining the Welch Bounds
with Applications for Mutually Unbiased Bases

Aleksandrs Belovs1,� and Juris Smotrovs2,��

1 Department of Combinatorics and Optimization, and Institute for Quantum
Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

2 Department of Computer Science, University of Latvia,
Raiņa bulvāris 19, R̄ıga, Latvia

Abstract. The paper gives a short introduction to mutually unbiased
bases and the Welch bounds and demonstrates that the latter is a good
technical tool to explore the former. In particular, a criterion for a system
of vectors to satisfy the Welch bounds with equality is given and applied
for the case of MUBs. This yields a necessary and sufficient condition on
a set of orthonormal bases to form a complete system of MUBs.

This condition takes an especially elegant form in the case of homoge-
neous systems of MUBs. We express some known constructions of MUBs
in this form. Also it is shown how recently obtained results binding MUBs
and some combinatorial structures (such as perfect nonlinear functions
and relative difference sets) naturally follow from this criterion.

Some directions for proving non-existence results are sketched as well.

1 Mutually Unbiased Bases

The current research originated in the problem of constructing a complete set
of mutually unbiased bases and is inspired mostly by [22].

A set of mutually unbiased bases (MUBs) in the Hilbert space Cn is defined as
a set of orthonormal bases {B0, B1, . . . , Br} of the space such that the absolute
value of a scalar product |〈x|y〉| is equal to 1√

n
for any two vectors x ∈ Bi,

y ∈ Bj with i �= j. For the sake of brevity we will further call the absolute value
of a scalar product of two vectors as the angle between these vectors. We will
often group vectors of a basis into a matrix and say that two unitary matrices
are mutually unbiased iff the bases obtained from their columns are. Bases with
such properties were first observed by Schwinger in [30]. The name of mutually
unbiased bases is due to Fields and Wootters [34].

The applications of MUBs include quantum state determination [21,34], quan-
tum cryptography (the protocol BB84 due to Bennet and Brassard [5] is a classical
example of such a usage), the Mean King’s problem [1] and Wigner functions [35].
A good source of an up-to-date information on MUBs can be found on [13].

Clearly, if n = 1 then any number of unit vectors (in fact, scalars) gives a
set of MUBs. This result does not seem very useful, so we will further assume
� Research supported in part by MITACS and Province of Ontario.

�� Supported by the European Social Fund and by the University of Latvia research
project No Y2-ZP14-100.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 50–69, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Criterion for Attaining the Welch Bounds with Applications for MUBs 51

the dimension of the space n is at least 2. In this case it can be proved that the
number of bases in any set of MUBs in Cn doesn’t exceed n + 1 (see Theorem 3
later in the text). A set of bases that achieves this bound is called a complete
set of MUBs. An interesting question is whether such a set exists for any given
dimension n. The answer is positive if n is a prime power [21,34]. The corre-
sponding constructions are listed in section 9 of this paper. In all other cases
(even for n = 6) the question is still open, despite a considerable effort spent on
solving this problem (see, e.g., [4]).

The search for complete systems of MUBs is complicated because of the num-
ber of bases we should find and because of the non-obviousness of the value of
the angle 1√

n
. Using the Welch bounds (described in the next section) we give

a sufficient and necessary condition that uses solely orthogonality of vectors.
Clearly, it is a much more studied and intuitive relation.

This is not the first attempt to substitute the angle 1√
n

by zero. An alternative
approach appears in the classical paper [34]:

Proposition 1. Consider the operation that maps a state |x〉 ∈ Cn to the matrix
Yx = |x〉〈x| − I/n. Then |〈x|y〉| = 1√

n
if and only if matrices Yx and Yy are

orthogonal with respect to the trace inner product: Tr(Y †
x Yy) = 0.

In particular, applications of MUBs in quantum state tomography are based on
this observation.

Our approach is slightly different. Using the collection of n + 1 orthonormal
bases in Cn, pretending to be mutually unbiased, we build n flat (with all entries
having the same absolute value) vectors, each in Cn2

. Next, from each pair of
these vectors we obtain a new vector from the same space. We prove that the
bases of the original collection are MUBs if and only if the latter vectors are
pairwise orthogonal. It is not a problem to find

(
n
2

)
orthogonal flat vectors in

Cn2
, but, in general, they won’t be decomposable back to pairs.

Moreover, if we restrict our attention to homogeneous systems of MUBs (see
Section 6 for the definition), it is possible to reduce the criterion to only two
matrices from Cn and orthogonality conditions obtained in a similar fashion. In
order to show the usability of our result we show how it sheds light on the known
constructions of complete sets of MUBs. In particular, we give a bit easier proofs
that these constructions do result in complete sets of MUBs.

We also show how this approach naturally leads to some applications of com-
binatorial structures to MUBs that were obtained recently. In particular, we
extend the correspondence between planar functions and splitting semiregular
relative difference sets to the case of non-splitting ones.

2 Welch Bounds and Crosscorrelation

Welch bounds are the inequalities from the following theorem:

Theorem 2. For any finite sequence {xi} of vectors in Hilbert space Cn and
any integer k ≥ 1 the following inequality holds:

52 A. Belovs and J. Smotrovs

(
n + k − 1

k

)∑
i,j

|〈xi|xj〉|2k ≥
(∑

i

〈xi|xi〉k
)2

. (1)

The proof will be given in Section 4, but for now let us note that these inequalities
were first derived (in the case of all vectors having the same norm) by Welch
in [33]. It is worth to become acquainted with his motivation.

In order to do this we should define sequences with low correlation. For a
systematic treatment of the topic see [18]. Let u and v be complex periodic
sequences of equal period n. Usually the sequences are defined as ui = ωai

q with

ai from Zq. (ωq is a primitive q-th power root of unity: ωq = e
2πi

q , Zq is the ring
of integers modulo q). The binary case (with q = 2) is the most common. The
(periodic) correlation of u and v is defined as (where L stands for the left cyclic
shift function)

θu,v(τ) = 〈Lτ (u)|v〉 =
n∑

i=1

uivi+τ .

The correlation of a sequence with itself is called its autocorrelation θu(τ) =
〈Lτ (u)|u〉. The correlation of two shift-distinct sequences is usually called cross-
correlation.

Informally, the correlation of binary sequences characterizes the number of
places two sequences coincide minus the number of places they differ. For random
sequences magnitude of this value is small, so it can be used as a measure of the
pseudorandomness of a sequence. The correlation is called ideal if it is as small
as possible (0 or ±1). It is considered low, if it is O(

√
n) (an expected value for

random sequences). For example, m-sequences (the maximal length sequences
generated by a linear feedback shift register (LFSR)) have ideal autocorrelation,
since for them θ(τ) = −1 for any τ �≡ 0 (mod n). This, among other properties,
explains why they are used in cryptography (as a main building block of nearly
every stream cipher) and electronic engineering (e.g., in radars).

Families of sequences with low crosscorrelation are also well-studied. A nice
property of these sequences is that they can be transmitted through the same
channel simultaneously without mutual disturbance. By the time Welch was
writing his paper there were some good families of sequences with low auto- and
cross-correlation and he got interested in obtaining upper bounds on the number
of sequences in a family.

For example, one classical family of sequences was proposed by Gold in [15].
For any integer k he constructed a family of 2k + 1 binary sequences of period
2k−1 and correlation between any two of them takes only three possible values:
−1,−(2(k+1)/2 + 1) and 2(k+1)/2 − 1.

Similarity of this family and a complete family of MUBs is apparent. Both
are built of vectors from Cn, vectors are joined in blocks of size n, the number of
blocks is approximately the same and the ratios of possible inner products and
norms of vectors also almost agree. So, an attempt to apply Welch bounds to
the problem of MUBs seems quite reasonable.

A Criterion for Attaining the Welch Bounds with Applications for MUBs 53

Even more, it turns out that Alltop in his work [2] of 1980 (i.e., one year before
the work [21] of Ivanović) for any prime p ≥ 5 gave a set of p sequences with
period p and elements with absolute value 1√

p , such that the crosscorrelation is
given by

|θuv(τ)| =

⎧⎨⎩
1 , u = v and τ = 0;
0 , u �= v and τ = 0;

1√
p , τ �= 0.

Clearly, these sequences with different shifts and the standard basis give a com-
plete set of MUBs in Cp. This result was generalized to prime power dimensions
in [23].

3 Link between MUBs and the Welch Bounds

In our first application of the Welch bounds to MUBs we can apply the original
approach of Welch in the new settings. It is easy to check that a union of or-
thonormal bases satisfy the Welch bound for k = 1 (it can be done either directly
using (1) or using Theorem 5 further in the text). So, we should use k = 2.

Theorem 3. If n ≥ 2 then the maximal number of mutually unbiased bases in
Cn does not exceed n + 1.

Proof. Suppose we have a system of n + 2 MUBs. Join all vectors of the system
into one big sequence {xi} of size n(n + 2). Let us fix k = 2 and calculate the
left hand side of (1). We have n(n + 2) vectors, each giving the scalar product 1
with itself and n(n + 1) scalar products of absolute value 1√

n
with vectors from

other bases. Summing up, we have:(
n + 1

2

)∑
i,j

|〈xi|xj〉|4 =
n(n + 1)

2

[
n(n + 2)

(
1 + n(n + 1) · 1

n2

)]

=
n(n + 1)(n + 2)(2n + 1)

2
.

For the right hand side we have:(∑
i

〈xi|xi〉2
)2

= n2(n + 2)2 >
n(n + 1)(n + 2)(2n + 1)

2
,

in a contradiction with the Welch bound for k = 2. ��

Originally it was proved in [34] using the result of Proposition 1.
If we reduce the number of MUBs from n+2 to n+1 we don’t get an apparent

contradiction. However, even in this case the Welch bounds prove themselves to
be useful.

54 A. Belovs and J. Smotrovs

Theorem 4. Let {Bi} be a set of n + 1 orthonormal bases in an n-dimensional
Hilbert space and X be the union of these bases (that is the sequence of vectors,
each of them appearing in the sequence the same number of times it appears in
the bases). Then X satisfies the Welch bound for k = 2 with equality if and only
if {Bi} form a complete system of MUBs.

Proof. If {Bi} is a complete system of MUBs and X = {xi} is the union of its
bases, then calculations similar to ones in the proof of Theorem 3 show(

n + 1
2

)∑
i,j

|〈xi|xj〉|4 =
n(n + 1)

2

[
n(n + 1)

(
1 + n2 · 1

n2

)]
= n2(n + 1)2

and (∑
i

〈xi|xi〉2
)2

= n2(n + 1)2.

And vice versa, suppose X , being a union of orthonormal bases, attains the
Welch bound for k = 2. Then, |〈x|x〉|4 = 1 for each x in X , |〈x|y〉|4 = 0 for two
different vectors of the same basis, and by the inequality between square and
arithmetic means we get:

∑
x∈Bi

|〈x|y〉|4 ≥ 1
n

(∑
x∈Bi

|〈x|y〉|2
)2

=
1
n

.

for any vector y of unit length. To attain the Welch bound, this inequality must
actually be an equality, which is achieved only if |〈x|y〉|2 has the same value for
all vectors x from Bi. This means that bases {Bi} form a complete system of
MUBs. ��

Systems of vectors attaining the Welch bounds have been investigated before. A
system of unit-norm vectors from Cn attaining the Welch bounds for all k ≤ t
is called a complex projective t-design. This is a Chebyshev-type averaging set
on the n-dimensional complex unit sphere CSn−1, in the sense that the integral
of every polynomial of degree ≤ t is equal to the average of its values on the
vectors from the t-design. See [22] for more details.

Analysis of links between complex projective 2-designs and MUBs was initi-
ated in Zauner’s dissertation [36] and was continued in the work by Klappenecker
and Rötteler [22]. In particular, the ‘if’ part of Theorem 4 is due to them. The
‘only if’ part seems first to appear later, in [28].

We give a criterion for attaining the Welch bounds in the next section.

4 Criterion for Attaining the Welch Bounds

Let us at first define the Hadamard product of two matrices. Let A = (aij)
and B = (bij) be two matrices of equal sizes. The Hadamard product (see, for
example, chapter 7 of [19]) is the matrix of the same size (denoted by A ◦ B)

A Criterion for Attaining the Welch Bounds with Applications for MUBs 55

with its (i, j)-entry equal to aijbij . In other words, multiplication is performed
component-wise. The k-th Hadamard power of the matrix A is again the matrix
of the same size (denoted by A(k)) with its (i, j)-entry equal to ak

ij .
Additionally, we shall use notation A† for the adjoint matrix (complex conju-

gated and transposed) and the term self-adjoint for matrices A satisfying A† = A
(also called Hermitian).

We will at first give a proof of the Welch bounds and then extract the equality
criterion from the proof.

Proof (of Theorem 2). Let us construct the Gram matrix G = (aij) with aij =
〈xi|xj〉 and consider its k-th Hadamard power G(k) (with k being a positive
integer). The square of its Euclidean norm (see chapter 5 of [19], also known as
Frobenius norm and Schur norm) is defined by(

‖G(k)‖E
)2

=
∑
i,j

|〈xi|xj〉|2k = (2)

Unitary operators, applied both from the left and the right, do not change the
Euclidean norm of a matrix. Any self-adjoint matrix can be transformed into a
diagonal matrix with real entries (its eigenvalues) on the diagonal by a unitary
transformation, and G(k) is a self-adjoint matrix, hence

=
∑

λ∈σ(G(k))

λ2 ≥ (3)

here σ is the spectrum (the multiset of the eigenvalues of a matrix). By the
inequality between square and arithmetic means, we have (let us remind that the
rank of a self-adjoint matrix is equal to the number of its non-zero eigenvalues):

≥ 1
rank(G(k))

(Tr G(k))2 ≥ 1(
n+k−1

k

) (∑
i

〈xi|xi〉k
)2

. (4)

The last estimation on the rank of G(k) we will prove later. ��

Theorem 5. Let B be a matrix and X ⊂ Cn be the sequence of its columns.
Let w1, w2, . . . , wn be the rows of the matrix. Then X attains the Welch bound
for a fixed k if and only if all vectors from

W =

{√(
k

k1, . . . , kn

)
w

(k1)
1 ◦ w

(k2)
2 ◦ · · · ◦ w(kn)

n | ki ∈ N0, k1 + · · ·+ kn = k

}
are of equal length and pairwise orthogonal.

In other words, each vector of W is a Hadamard product of a k-multiset of rows
of B with a coefficient that is the square root of the multinomial coefficient of
the multiset (

k

k1, . . . , kn

)
=

k!
k1!k2! · · ·kn!

.

56 A. Belovs and J. Smotrovs

Proof. At first, let us note that matrix G in (2) is equal to B†B. So (if each wi

is treated as a row vector):

G = w†
1w1 + w†

2w2 · · ·+ w†
nwn.

By the formula for a power of a sum, we obtain

G(k) =
∑

k1+···+kn=k

(
k

k1, . . . , kn

)(
w

(k1)
1 ◦ · · · ◦ w(kn)

n

)† (
w

(k1)
1 ◦ · · · ◦ w(kn)

n

)
.

In other words, G(k) = C†C, where the rows of C are exactly the vectors from
W . This gives the bound on the rank of G(k) used in (4), because the number
of k-multisets of an n-set equals

(
n+k−1

k

)
(see, e.g., Section 1.2 of [29]).

By observing the inequality between (3) and (4), we see that X satisfies the
Welch bound for a fixed k with equality if and only if G(k) has

(
n+k−1

k

)
equal

non-zero eigenvalues (all other eigenvalues are automatically zeros due to the
rank observations).

It is a well-known fact that for any matrices P and Q the set of non-zero
eigenvalues of matrices PQ and QP are equal whenever these two products
are defined (see Section 1.3 of [19]). Hence, CC† have

(
n+k−1

k

)
equal non-zero

eigenvalues, and because it is a self-adjoint matrix of the same size it is a scalar
multiple of the identity matrix. And the latter is equivalent to the requirement
on the set W . ��

We haven’t hitherto seen the pair of Theorems 2 and 5 appearing in such a
general form, however all ideas involved in the proof have already appeared in the
proofs of other results. As we have already said, Welch was the first who derived
the bounds (1) in the case when all vectors have unit norm and k is arbitrary. It
was done in [33]. The variant of Theorem 5, with k = 1 and all vectors of equal
length, seems first to appear in [24]. Our proof is a generalization of an elegant
proof found in [32]. In the latter paper the Welch bounds are stated in the case
of vectors of different length, but it deals with the case of k = 1 only.

5 Application of the Criterion to MUBs

At first let us state the following easy consequence of Theorem 5:

Corollary 6. Let B be a matrix and X ⊂ Cn be the sequence of its columns.
Let w1, w2, . . . , wn be the rows of the matrix. Then X satisfy the Welch bound
for k = 2 with equality if and only if all vectors from W = {w(2)

i }∪ {
√

2wi ◦wj |
1 ≤ i < j ≤ n} are of equal length and pairwise orthogonal.

Suppose we have a complete system of MUBs: {B0, B1, . . . , Bn}. We can always
represent them in the first basis B0, thus we can assume that the first basis is the
standard basis (the identity matrix). Then the matrices representing all other
bases have all their entries equal by the absolute value to 1√

n
.

A Criterion for Attaining the Welch Bounds with Applications for MUBs 57

A matrix with complex entries and with all entries having the same absolute
value is called a flat matrix. If it is additionally unitary (or a scalar multiple
of a unitary), it is called a complex Hadamard matrix. It is common to rescale
flat matrices in such a way that each its element has absolute value 1. We will
usually assume that. In the case of an n × n complex Hadamard matrix it is
sometimes more convenient to assume each element having absolute value 1√

n
,

sometimes 1. According to the situation we will use both assumptions, it will be
usually clear from the context what is meant.

Complex Hadamard matrix is a generalization of classical Hadamard matrix
that satisfies the same requirements, but with all entries real (i.e., ±1) (see, for
example, Section I.9 of [3]). We will further use term Hadamard matrix or just
Hadamard to denote complex Hadamard matrices.

Two Hadamard matrices are called equivalent if one can be got from the other
using row and column multiplications by a scalar and its permutations. Some
classes of equivalent Hadamards are classified. See [31] for more details.

A system of Hadamards such that any two are mutually unbiased is called a
system of mutually unbiased Hadamards or MUHs for short. The following result
is obvious

Proposition 7. A complete system of MUBs exists in space Cn if and only if
there is a system of n MUHs in the same space.

A system of n MUHs in Cn is called a complete system of MUHs. We will turn
to the investigation of complete systems of MUHs in the remaining part of the
paper.

Now we are able to prove the following theorem:

Theorem 8. Let {Bi} (i = 1, 2 . . . , n) be a set of n Hadamards in Cn and B
be a concatenation of these matrices (i.e. a n2× n-matrix having as columns all
columns appearing in {Bi}). Then {Bi} form a complete set of MUHs if and
only if all vectors from W ′ = {wi ◦wj | 1 ≤ i ≤ j ≤ n} are pairwise orthogonal,
where {wi} are the rows of B.

Proof. Let us denote the n × n identity matrix by B0. By Theorem 4, we see
that the set {B0, B1, . . . , Bn} is a complete set of MUBs if and only if the set
of columns of all these matrices attains the Welch bound for k = 2. Now from
Corollary 6 it follows that it only remains to show that vectors from W , as it
was defined in Corollary 6, are of equal length and orthogonal if vectors of W ′

are orthogonal.
If a vector from W is multiplied by itself using the Hadamard product, the

result has one 1 and all other entries equal to 0 in the part corresponding to B0,
and all entries in other parts by the absolute value are equal to 1

n . Hence, the

length of the vector is
√

1 + n2 1
n2 =

√
2.

If two distinct vectors are multiplied, the result has only zeroes in the first

part, and its length is
√

n2 1
n2 = 1. We see that all vectors from W have the

same length.

58 A. Belovs and J. Smotrovs

Moreover, the part of B0 contributes zero to the inner product of 2 distinct
vectors of W , hence vectors of W are orthogonal if and only if the corresponding
vectors of W ′ are. ��
Let us restate the last theorem. Suppose B is a flat n × n-matrix. Construct
the weighted graph K(B) as follows. Its vertices are all multisets of size 2 from
{1, ..., n}. Semantically a vertex {i, j} represents the Hadamard product of the
i-th and the j-th row of B. The weight of an edge is the inner product of
the vertices it joins. (Of course, thus defined, the weight depends on the order
of the vertices, but let us fix a direction of each edge, say lexicographical).
Then Theorem 8 can be restated by saying that Hadamards B1, . . . , Bn form
a set of MUHs in Cn if and only if the sum of weights of each edge in all of
K(B1), . . . , K(Bn) equals 0. In fact, there is no need to consider edges between
vertices that have an element in common, since they will be orthogonal.

It does not seem that this restatement makes the problem much easier com-
paring to the initial formulation. However, careful examination of the possible
configurations of weights that can be achieved in K(B) may shed some light on
the problem. In the next section we consider a special case of systems of MUHs
for which Theorem 8 yields a considerable simplification.

6 Homogeneous Systems of MUBs

Suppose we have a flat n× n-matrix A = (ai,j) and an Hadamard matrix H =
(hi,j) of the same dimensions. Consider the following system of Hadamards (it’s
assumed that each element of A and H has absolute value 1)

(v(r)
k)� =

1√
n

a�,rh�,k (5)

with r being a matrix index, k being a column index and � being a row index
(r, k, � ∈ {1, . . . , n}). In other words, the i-th matrix is given by diag(vi)H , where
vi is the i-th column of A. We will call such a set of Hadamards (in the case it
forms a set of MUHs) a homogeneous system of MUHs, or a homogeneous system
of MUBs if the identity matrix is appended. The name is borrowed from [4].

From Theorem 8 it follows that the system from (5) forms a system of MUHs
if and only if

〈w�1 ◦ w�2 |w�3 ◦ w�4〉 =
1
n

∑
r,k

a�1,rh�1,ka�2,rh�2,ka�3,rh�3,ka�4,rh�4,k =

=
1
n

(∑
r

a�1,ra�2,ra�3,ra�4,r

)(∑
k

h�1,kh�2,kh�3,kh�4,k

)
= 0

for all �1, �2, �3 and �4 such that {�1, �2} �= {�3, �4}.
Let us define the L-graph (denoted L(A)) of a flat matrix A as follows. It is a

simple graph with the same set of vertices as K(A). Two vertices are adjacent
if and only if the corresponding vectors are orthogonal. The previous identity
leads to the following observation:

A Criterion for Attaining the Welch Bounds with Applications for MUBs 59

Proposition 9. The homogeneous system given by (5) is a complete system of
MUHs if and only if the graphs L(A) and L(H) together cover the complete
graph.

If matrices A and H satisfy the conditions of Proposition 9 and A′ and H ′ are
such matrices that L(A) is a subgraph of L(A′) and the same holds for L(H)
and L(H ′), then A′ and H ′ also give rise to a complete system of MUHs via (5).
Hence, without loss of generality we may consider only matrices with maximal
L-graphs. We will call them L-maximal flat or Hadamard matrices, respectively.
What are they? We can say little on the subject at the moment, it is a topic for
a future research.

Problem 10. Describe L-maximal flat and Hadamard matrices and the corre-
sponding graphs.

An answer to this question would possibly allow a systematization of all complete
homogeneous systems of MUBs. Anyway, it is already clear that L-maximal flat
matrices cover L-maximal Hadamard matrices (because the latter is a special
case of the former).

There is an important class of L-maximal Hadamard matrices. It is a very
common example of Hadamard matrices and it is used in all known constructions
of maximal families of MUBs. These are Fourier matrices which we will now
introduce.

7 Fourier Matrices

Fourier matrix is the most popular type of Hadamard matrices. It is called so
because it performs the Fourier transform of a finite Abelian group. Fourier
transform is widely used in many areas of mathematics, physics and computer
science. However, here we will be mostly interested in one simple property of
Fourier matrices. Namely, the rows of the Fourier matrix of a group G with
the Hadamard product operation form a group isomorphic to the group G (see
later).

Let us take an Abelian group G = Zd1×Zd2×· · ·×Zdm of order n = d1d2 · · ·dm.
By the structure theorem for finite Abelian groups, each finite Abelian group is
isomorphic to a group of this form (see, e.g., [17]).

Later on we will be also interested in the group G̃ = Rd1 × Rd2 × · · · × Rdm ,
where Ra is the group of real numbers modulo a with the addition operation.
Note that G1 ∼= G2 does not imply G̃1 ∼= G̃2. Also, the group G is a subgroup of
G̃. In addition to that we will use notation G∗ for the set of non-zero elements
of G, and G̃∗ for the set of elements of G̃ with at least one component being a
non-zero integer.

The Fourier transform usually is defined via the dual group which is formed
of all the characters of the group. A character of an Abelian group is its morphism

60 A. Belovs and J. Smotrovs

to the multiplicative group of unit-modulus complex number. It is possible to
establish an isomorphism from G to Ĝ (the dual group) by

χa(b) = exp(
m∑

j=1

2πi

dj
ajbj), (6)

where a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) are elements of G and χa is
the element of Ĝ corresponding to a. Note that the expression χa(b) is symmetric
in a and b. We will also extend the definition (6) to any a and b in G̃. The
following lemma is a classical result.

Lemma 11. Let x be an element of G̃. Then
∑

y∈G

χy(x) = 0 if and only if

x ∈ G̃∗.

Proof. Let us write x = (x1, x2, . . . , xm). We have:

∑
y∈G

χy(x) =
m∏

j=1

dj−1∑
k=0

exp
(

2πi

dj
xjk

)
.

Lemma follows from the fact that the roots of the equation
dj−1∑
k=0

ωk = 0 in ω

are exactly the roots of unity exp(2πi
dj

xj), with xj an integer, 0 < xj < dj . ��

Corollary 12. The matrix F = (fi,j), indexed by the elements of G and with
fi,j = χj(i), is an Hadamard matrix.

Proof. Clearly, all elements of the matrix have absolute value 1. The inner prod-
uct of the rows indexed by a and b with a �= b is∑

y∈G

χy(a)χy(b) =
∑
y∈G

χy(b− a) = 0.

Hence, two distinct rows are orthogonal and the matrix F is Hadamard. ��
Matrix F from the last corollary is called the Fourier matrix of the group G. As
an example, if we take G = Zn, we obtain the matrix⎛⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

1 ω2
n ω4

n . . . ω2n−2
n

...
...

...
. . .

...
1 ωn−1

n ω2n−2
n . . . ωn2−2n+1

n

⎞⎟⎟⎟⎟⎟⎠
with ωn = e2πi/n. An arbitrary Fourier matrix is equal to a tensor product of
such matrices.

The Fourier matrix of the group G has some good properties. At first, it is
symmetric. Next, let us denote by Ri the row that corresponds to the element
i ∈ G. It is easy to see that Ri ◦ Rj = Ri+j . So, the set of rows (the set of
columns) forms a group, with the Hadamard multiplication as an operation,
that it is isomorphic to the original group G.

A Criterion for Attaining the Welch Bounds with Applications for MUBs 61

Remark 13. Note that the statement of Corollary 12 holds in more general as-
sumptions. Take any subset X ⊂ G̃ of size |G| such that for any a, b ∈ X with
a �= b we have a − b ∈ G̃∗. Then the matrix F = (fxj) (x ∈ X , j ∈ G), with
fxj = χj(x), is Hadamard.

For example, if we take G = Z3 × Z2 and X = {(0, 0), (0, 1), (1, a), (1, 1 +
a), (2, b), (2, 1 + b)} where 0 ≤ a, b ≤ 1 are some reals, the we get a matrix
equivalent to one in equation (4) of [4].

8 Fourier Matrices in Homogeneous Systems

Let H be an Hadamard n×n-matrix. Denote its rows by {Ri}, i = 0, 1, . . . , n−1.
Rescaling of columns does not change the L-graph, so we may always assume
that R0 consists only of ones.

For a fixed i the set {Ri ◦ Rj | j = 0, . . . , n − 1} is an orthogonal basis of
Cn. Hence, any Ra ◦ Rb is not orthogonal to at least one of {Ri ◦ Rj | j =
0, . . . , n− 1}. If H is a Fourier matrix, then Ra ◦Rb is not orthogonal to exactly
one of {Ri ◦Rj | j = 0, . . . , n− 1}: the one with i + j = a + b.

And conversely, if any Ra ◦Rb is not orthogonal to exactly one of {R0 ◦ Rj |
j = 0, . . . , n − 1} then L(H) is isomorphic to the L-graph of a Fourier matrix.
Indeed, let G be the set of directions (equivalence classes of collinear vectors)
defined by rows of H with the Hadamard product operation. The set is finite,
it is closed under the operation, R0 is the identity element, the operation is
commutative and associative and for any fixed i the operation Rj → Ri ◦Rj is
a bijection. Hence, G is a finite Abelian group, and L(H) is isomorphic to the
L-graph of the Fourier matrix of G. So, we have proved the following result

Theorem 14. Fourier matrices are L-maximal Hadamard matrices. Moreover,
their graphs have maximal possible number of edges.

This result explains why Fourier matrices are so useful in the constructions
of MUBs. It can be conjectured that Fourier matrices are the only L-maximal
Hadamard matrices.

Let G be a graph. Recall [10] that the independence number α(G) is the great-
est number of vertices that are pairwise disjoint, conversely, the clique number
ω(G) is the greatest number of vertices that are all pairwise connected. The min-
imal number of colours that can be assigned to the vertices of the graph in such
a way that any two adjacent vertices are coloured in different colours, is called
the chromatic number χ(G) of the graph. It is easy to show that χ(G) ≥ ω(G).

It seems worth to mention some constructions that are similar to the notion
of L-graphs (i.e., when the adjacency relation on the set of vectors is generated
using the orthogonality relation). One known to us example is Hadamard graph
defined in [20]. The set of vertices of the Hadamard graph S(n) of order n is
the set of all ±1-component vectors of length n, and two vectors are adjacent
iff they are orthogonal. The famous Hadamard conjecture is equivalent to the
statement that ω(S(4n)) = 4n for any positive integer n.

It is clear, that for any Hadamard matrix H acting on Cn the clique number
of L(H) is equal to n. If L(H) is a subgraph of the L-graph of a Fourier matrix,

62 A. Belovs and J. Smotrovs

then χ(L(H)) = n (the colour of a vertex is the corresponding element of the
group). However, it is proved in [14] that there is an exponential gap between
4n and χ(S(4n)). So, it is quite possible that for some Hadamard matrix H
we would have χ(L(B)) > n, and this matrix cannot be covered by a Fourier
matrix.

Another nice property of Fourier matrices (noted to be “striking” in [4]) is
that any vector v, unbiased with respect both to the standard basis and a Fourier
matrix, can be collected into a whole unbiased basis. It is easy to explain if one
notices that a Fourier matrix F is symmetric and, hence, also its columns {Ri}
form a group with the Hadamard multiplication as the operation. The vector v
can be extended to a basis {Ra ◦ v | a ∈ G}, and

|〈Rb|Ra ◦ v〉| = |〈Rb−a|v〉| =
1√
n

.

As mentioned above, all known constructions of complete systems of MUBs
are built from Fourier matrices. In the light of Proposition 9 it seems a good
choice, since Fourier matrices are L-maximal Hadamard matrices. Moreover,
the L-graph of a Fourier matrix covers a fraction of roughly n−1

n edges of the
complete graph, so it remains to find a flat matrix (a more general notion) to
cover the remaining fraction of 1

n edges (a less number of edges). It seems that
it should be easy, but it is not.

Proposition 15. Let H be the Fourier matrix of a group G and A be a flat
matrix with rows {Ri}i∈G. The system defined by (5) is a complete set of MUHs
if and only if for any non-zero ∆ ∈ G the matrix D∆ with rows from

{Ri+∆ ◦R
(−1)
i | i ∈ G}

is an Hadamard matrix. (Here R
(−1)
i stands for the element-wise inverse of Ri.

It is the Hadamard (-1)-st power).

Proof. Suppose we have a complete set of MUHs. It follows from Proposition 9
that

∀g1, g2, g3, g4 ∈ G :
g1 + g2 = g3 + g4
{g1, g2} �= {g3, g4}

}
=⇒ Rg1 ◦Rg2 ⊥ Rg3 ◦Rg4 . (7)

Clearly, each element of D∆ is of absolute value 1. Let us take g1 �= g3. Then

〈Rg1+∆ ◦R(−1)
g1
|Rg3+∆ ◦R(−1)

g3
〉 = 〈Rg1+∆ ◦Rg3 |Rg3+∆ ◦Rg1〉.

Moreover, (g1 + ∆) + g3 = (g3 + ∆) + g1, g3 �= g1 and g3 �= g3 + ∆. Using (7)
with g2 = g3 + ∆ and g4 = g1 + ∆, we have Rg1+∆ ◦R

(−1)
g1 ⊥ Rg2+∆ ◦R

(−1)
g2 .

The proof of the converse statement is similar. ��

Note that Hadamard matrices are quite rare, and here from one flat matrix one
should extract n − 1 Hadamards. It explains, to some extent, why it is not so

A Criterion for Attaining the Welch Bounds with Applications for MUBs 63

easy to find a convenient matrix A. In practice, matrices D∆ are chosen to be
(up to some equivalence) equal to the same Fourier matrix. Now we give three
possible kinds of restrictions on D∆ and describe the corresponding constructions
in terms of functions acting from one Abelian group into another.

Suppose matrix H (as in (5)) is the Fourier matrix of the group G = Zd1 ×
Zd2 × · · · × Zdm and let N = Zd′

1
× Zd′

2
× · · · × Zd′

m′ be the group of the same
size. Suppose all matrices D∆ are equal (up to a permutation of rows) to the
Fourier matrix F of N and each row of A (that we want to construct) is a row
of F . Define the function f : G → N as assigning to the index of a row of A
the index of the row of F that stands in this place. It is easy to see that this
construction satisfies the condition of Proposition 9 if and only f satisfies

∀g1, g2, g3, g4 ∈ G :
g1 + g2 = g3 + g4

f(g1) + f(g2) = f(g3) + f(g4)

}
=⇒ {g1, g2} = {g3, g4}.

(8)
This is not the most general case. If we allow D∆ to be equal to the matrix F
with row permuted and each column multiplied by χx(a) where a is the index of
the column and x is some element of Ñ (that depends on ∆), then we can take
the matrix A = (a�r), (� ∈ G, r ∈ N) defined by a�r = χr(f(�)), where function
f : G→ Ñ satisfies

∀g1, g2, g3, g4 ∈ G :
g1 + g2 = g3 + g4
{g1, g2} �= {g3, g4}

}
=⇒ f(g1)+f(g2)−f(g3)−f(g4) ∈ N∗.

(9)
Finally, from Lemma 11 it follows that this approach gives a complete system
of MUHs if and only if f : G→ Ñ satisfies

∀g1, g2, g3, g4 ∈ G : g1 + g2 = g3 + g4
{g1, g2} �= {g3, g4}

}
=⇒ f(g1)+f(g2)−f(g3)−f(g4) ∈ Ñ∗.

(10)
However, in this case matrices D∆ are not longer equivalent to a Fourier matrix,
but rather to a matrix mentioned in the remark after Corollary 12.

Summing everything up, we have the following result:

Theorem 16. Condition (10) is more general than the one in (9) that, in its
turn, is more general than the one in (8). Formula

(v(r)
k)� =

1√
n

χk(�)χr(f(�)), (11)

(with k, � ∈ G and r ∈ N) gives a complete system of MUHs if and only if the
function f (acting from G to Ñ) satisfies (10).

A similar result appeared in [28]. We postpone a discussion of related topics
to Section 10. In the next section we show classical constructions of complete
systems of MUBs in the light of Theorem 16.

64 A. Belovs and J. Smotrovs

9 Known Constructions

Now we will give two known examples of complete sets of MUBs in the terms of
the previous corollary.

Construction essentially corresponding to the following one was first obtained
for GF (p) by Ivanović in [21] and in the general case by Fields and Wootters
in [34].

Lemma 17. If n = pk is a power of an odd prime, then the function f(x) = x2

with G = N being the additive group of GF (n) (i.e. Zk
p) satisfies (8).

Proof. Let us suppose g1+g2 = g3+g4 and g2
1+g2

2 = g2
3+g2

4. Then g1−g3 = g4−g2
and (g1−g3)(g1 +g3) = (g4−g2)(g4 +g2). If g1 = g3, we are done. Otherwise, we
can cancel g1− g3 out from the last equality and get g1 + g3 = g4 + g2. Together
with the first equality it gives 2(g2 − g3) = 0. Because 2 does not divide n,
g2 = g3 and we are done. ��
If n is even we have to be a bit more tricky. Let us remind, that most common
construction of finite field GF (2k) is of polynomials with degree smaller than k
and coefficients from {0, 1}. All operations are performed modulo 2 and h, where
h is an irreducible polynomial of degree k. We will treat these polynomials as
integer polynomials. The next lemma also leads to the construction first obtained
by Fields and Wootters in [34].

Lemma 18. Let G be the additive group of GF (2k). Then the function f : G→
G̃ defined with

f(x) =
x2

2
mod (2, h)

satisfies (9) with N = G.

Proof. Suppose g1 + g2 ≡ g3 + g4 (mod 2, h). Then (g1 + g2)2 ≡ (g3 + g4)2

(mod 2, h). Hence, g2
1 + g2

2 − g2
3 − g2

4 ≡ 0 (mod 2, h). This means that

f(g1) + f(g2)− f(g3)− f(g4) =
g2
1 + g2

2 − g2
3 − g2

4

2
mod (2, h)

is an integer polynomial. The only way it could not belong to N∗ is if it was equal
to 0. Let us suppose it is equal to zero and prove that in this case {g1, g2} =
{g3, g4}.

Let us define s = (g1 + g2) mod 2. Then also g2
1 + g2

2 ≡ s2 (mod 2). Consider
the following equation in x:

g2
1 + g2

2 − x2 − (s− x)2

2
≡ 0 (mod h, 2).

Both g1 and g2 are its roots. The polynomial of x can be rewritten as g2
1+g2

2−s2

2 +

sx − x2. One may notice that g2
1+g2

2−s2

2 is an integer polynomial, so taking it
modulo h and 2 we obtain an equation of the second degree in GF (2k):

x2 − sx− g2
1 + g2

2 − s2

2
= 0.

A Criterion for Attaining the Welch Bounds with Applications for MUBs 65

If g1 �= g2, no other element except them can satisfy it. If g1 = g2 then s = 0
and this equation has only one root, because x → x2 is a bijection in GF (2k) (a
Frobenius map). Thus, f satisfy (9). ��

The last two lemmas combine into the following well-known result:

Theorem 19. If n is a prime power then there exists a complete set of MUBs
in Cn.

10 Related Combinatorial Structures

Observing formulas (8), (9) and (10) one can conclude that they, especially (8),
are of a highly combinatorial nature. It turns out that they indeed have a strong
link with some well-studied combinatorial structures.

Suppose G and N are Abelian groups with |G| ≤ |N | < ∞. Functions f :
G→ N , for which the equation f(x+ a)− f(x) = b has no more than 1 solution
for all a, b ∈ G not equal to zero simultaneously, are called differentially 1-
uniform [25]. If N satisfies |G|/|N | = m ∈ N and function f : G → N is such
that |{x ∈ G | f(x+ a)− f(x) = b}| = m for any b ∈ N and non-zero a ∈ G, the
latter is called perfect non-linear [7]. These functions are used in cryptography
to construct S-boxes that are not vulnerable to differential cryptanalysis.

If |G| = |N | as in (8), these two notions coincide and function f is sometimes
called a planar function. This name is given because any planar function gives
rise to an affine plane [9]. For functions satisfying (9) we will use name fractional
planar.

The following planar functions from GF (pk), with p odd, to itself are known:

– f(x) = xpα+1, where α is a non-negative integer with k/ gcd(k, α) being odd.
See [9].

– f(x) = x(3α+1)/2 only for p = 3, α is odd, and gcd(k, α) = 1. See [8].
– f(x) = x10−ux6−u2x2 only for p = 3, k is odd, and u is a non-zero element

of GF (pk). The special case of u = −1 was obtained in [8], the general case
is due to [11].

The construction with f(x) = x2 from the previous section is from the first class.
Let K again be an Abelian group and N be its subgroup. A subset R ⊂ K is

called a relative (m, n, r, λ)-difference set if |K| = nm, |N | = n, |R| = r and

|{r1, r2 ∈ R | r1 − r2 = b}| =

⎧⎨⎩
r , b = 0;
0 , b ∈ N \ {0};
λ , b ∈ K \N.

Relative difference set is a generalization of classical difference set and it was
introduced in [12]. If r = m the difference set is called semiregular. A relative
difference set is called splitting if K = G×N , i.e. if N has a complement in K.

This notion is interesting to us because of the following easy observation (see,
e.g., [26]). Let G and N be arbitrary finite groups and f be a function from G to

66 A. Belovs and J. Smotrovs

N . The set {(x, f(x)) | x ∈ G} is a semiregular splitting (|G|, |N |, |G|, |G|/|N |)-
difference set in G×N relative to {1} ×N if and only if f is perfect nonlinear.
Thus, planar functions correspond to splitting relative (n, n, n, 1)-difference sets.
We extend this result a bit:

Theorem 20. Let K be an Abelian group of size n2 having a subgroup N =
Zd′

1
× Zd′

2
× · · · × Zd′

m′ of size n. The following two statements are equivalent:

(a) There exists a semiregular (n, n, n, 1)-difference set R in K relative to N .
(b) There exists a fractional planar function f : G→ Ñ where G ∼= K/N .

Proof. Suppose we have a relative difference set. Fix any G = Zd1×Zd2×· · ·×Zdm

such that G ∼= K/N . Let k1, . . . , km ∈ K be representants of the basis of G.
Denote by (s1i, s2i, . . . , sm′i) the element diki ∈ N , i = 1, . . .m.

Define an Abelian group K ′ as follows. Its elements are from the direct prod-
uct G × N and the sum of two elements (x1, x2, . . . , xm; y1, y2, . . . , ym′) and
(z1, z2, . . . , zm; t1, t2, . . . , tm′) is defined as (a1, a2, . . . , am; b1, b2, . . . , bm′) where
ai = xi + zi and⎛⎜⎜⎜⎝

b1
b2
...

bm′

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
y1
y2
...

ym′

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
t1
t2
...

tm′

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
s11 s12 · · · s1m

s21 s22 · · · s2m

...
...

. . .
...

sm′1 sm′2 · · · sm′m

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

[x1 + z1 ≥ d1]
[x2 + z2 ≥ d2]

...
[xm + zm ≥ dm]

⎞⎟⎟⎟⎠ (12)

where [xi + zi ≥ di] is equal to 1 if the sum of xi and zi, taken as integers,
exceeds di and is equal to 0 otherwise. It is not hard to check that ϕ : K ′ → K,
defined with

(x1, x2, . . . , xm; y) → y +
m∑

i=1

xiki,

is an isomorphism. As usually, we identify elements of G with the set {(x, 0) |
x ∈ G} and N with {(0; y) | y ∈ N}.

Denote by S the m′ × m-matrix whose (i, j)-th element is equal to sij/di.
Clearly, ψ : K ′ → Ñ defined by

ψ(x, y) = y + Sx

is a morphism. Since R is a semiregular relative difference set, for any x ∈ K/N
we can find a unique element rx ∈ R with projection on K/N equal to x. Define
f(x) = ψ(ϕ−1(rx)).

Let us prove that f is fractional planar. At first, note that for any x ∈ G:
ϕ−1(rx) = (x, y) for some y ∈ N . Then suppose that g1, g2, g3, g4 ∈ G are such
that g3 − g1 = g2 − g4 �= 0 and g1 �= g4. Denote (x1, y1) = ϕ−1(rg3 − rg1)
and (x2, y2) = ϕ−1(rg2 − rg4). We have x1 = x2 (because g3 − g1 = g2 − g4)
and y1 �= y2 (because rg3 − rg1 �= rg2 − rg4). From the definition of ψ we have
(f(g3)− f(g1))− (f(g2)− f(g4)) ∈ N∗.

Suppose conversely that we have a fractional planar function f : G→ Ñ with
the same expressions for G and N . Define function {·} that takes the fractional

A Criterion for Attaining the Welch Bounds with Applications for MUBs 67

part of every component of an element of Ñ . Define also f̃(x) = {f(x)}. Then (9)
yields

(a + b = c + d) =⇒ (f̃(a) + f̃(b)− f̃(c)− f̃(d) ∈ N).

Since the condition on f is invariant under adding a constant to the function,
we may assume that f̃(0) = 0. Then f̃(a + b) = {f̃(a) + f̃(b)}. Now it is easy to
deduce that f̃(x) = {Sx} where S is defined in the same way as before for some
integers sij .

Define K ′ as in (12) and define

R = {(x; f(x)− Sx) | x ∈ G}.

Similar reasoning as before shows that R is semiregular difference set relative
to N . ��

So, we have proved that if matrix H in (5) is a Fourier matrix, and all D∆ are
equivalent (in some sense) Fourier matrices, then the existence of a complete
system of MUHs in Cn is equivalent to the existence of a relative (n, n, n, 1)-
difference set. In fact, a more general result [16] is known: the existence of a
relative (n, k, n, λ)-difference set implies the existence of k MUHs in Cn.

It is proved in [6] that a relative (n, n, n, 1)-difference set exists only if n is a
prime power. Thus, using the approach with f satisfying (9) it is not possible
to construct a complete system of MUBs for any new dimension. It is still not
clear what can be said in the case of general D∆ and, in particular, in the case
of f satisfying (10).

11 Conclusion

In this paper we have shown that MUBs stand close to sequences with low cor-
relation, similar constructions and lower bounds can be used in both. In partic-
ular, one of the lower bounds (the Welch bounds) gives a nice characterisation
of MUBs in terms of orthogonality of a certain collection of vectors. It could
be interesting to try to use other constructions and bounds from one area in
another.

In particular, it is tempting to use criterion of Theorem 4 to other objects.
One example could be SIC-POVMs, because it is proved in [22] that they also
attain the Welch bound for k = 2. Earlier this was proved in [27].

Our criterion seems to have no use for non-complete systems of MUBs. How-
ever, in [28] it is proposed to use weighted 2-designs consisting of bases for
quantum state estimation when no complete system of MUBs is known. Our
criterion is suitable in this case as well. Let us give some details.

The problem is to find such orthonormal bases B0, B1, . . . , Bk of Cn and
weights w0, w1, . . . , wk that are non-negative real numbers that the set {wix |
x ∈ Bi, i = 0, 1, . . . , k} attain the Welch bound for k = 2. In particular, one of
the main results of [28] can be proved similarly to Theorem 16:

68 A. Belovs and J. Smotrovs

Theorem 21. The existence of a differentially 1-uniform function f from an
Abelian group G into an Abelian group N with |G| = n and |N | = m implies the
existence of a weighted 2-design in Cn formed from m + 1 orthonormal bases.

Another direction of future research is the investigation of L-maximal flat and
Hadamard matrices in order to find new systems of MUBs or to prove that
such systems can be reduced to other already studied cases. A question of non-
homogeneous systems of MUBs also remains open.

Acknowledgements

We would like to thank José Ignacio Rosado for bringing our attention to some
errors in the early version of the paper.

References

1. Aharonov, Y., Englert, B.-G.: The mean kings problem: Spin 1, Z. Natur-forsch.
56a, 16–19 (2001)

2. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Transac-
tions on Information Theory 26(3), 350–354 (1980)

3. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. Cambridge University
Press, Cambridge (1999)

4. Bengtsson, I., Bruzda, W., Ericsson, A., Larsson, J.-A., Tadej, W., Zyczkowski, K.:
Mubs and Hadamards of Order Six (2006) (arXiv:quant-ph/0610161 v1)

5. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and
Coin Tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems and Signal Processing, New York, pp. 175–179 (1984)

6. Blokhuis, A., Jungnickel, D., Schmidt, B.: Proof of the Prime Power Conjecture
for Projective Planes of Order n with Abelian Collineation Groups of Order n2.
Proceedings of AMS 130(5), 1473–1476 (2001)

7. Carlet, C., Ding, C.: Highly nonlinear mappings. Journal of Complexity 20, 205–
244 (2004)

8. Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti class
II. Des., Codes, Cryptogr. 10, 167–184 (1997)

9. Dembowski, P., Ostrom, T.G.: Planes of order n with collineation groups of order
n2. Math. Zeilschr. 103, 239–258 (1968)

10. Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)
11. Ding, C., Yuan, J.: A family of skew Hadamard difference sets. Journal of Combi-

natorial Theory, Series A 113, 1526–1535 (2006)
12. Elliott, J.E.H., Butson, A.T.: Relative difference sets. Illinois J. Math. 10, 517–531

(1966)
13. Englert, B.-G.: Mutually unbiased bases. Problem page in Quantum Information

at TU Braunschweig, http://www.imaph.tu-bs.de/qi/problems/13.html
14. Frankl, P.: Orthogonal vectors in the n-dimensional cube and codes with missing

distances. Combinatorica 6(3), 279–285 (1986)
15. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation

functions. IEEE Trans. Inform. Theory IT-14, 154–156 (1967)

http://www.imaph.tu-bs.de/qi/problems/13.html

A Criterion for Attaining the Welch Bounds with Applications for MUBs 69

16. Godsil, C., Roy, A.: Equiangular lines, mutually unbiased bases, and spin models
(2005) (arXiv:quant-ph/0511004 v2)

17. Hall Jr., M.: The theory of groups. The Macmillan Company, Basingstoke (1968)
18. Helleseth, T., Kumar, V.J.: Sequences with low correlation. In: Pless, V., Huffman,

C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998)
19. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cam-

bridge (1985)
20. Ito, N.: Hadamard graphs. Graphs and Combinatories 1, 57–64 (1985)
21. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys.

A 14, 3241–3245 (1981)
22. Klappenecker, A., Rötteler, M.: Mutually Unbiased Bases are Complex Projective

2-Designs (2005) (arXiv:quant-ph/0502031 v2)
23. Klappenecker, A., Rötteler, M.: Constructions of Mutually Unbiased Bases (2003)

(quant-ph/0309120)
24. Massey, J.L., Mittelholzer, T.: Welch’s bound and sequence sets for code-division

multiple-access systems. In: Sequences II: Methods in Communication, Security
and Computer Sciences, pp. 63–78. Springer, Heidelberg (1993)

25. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

26. Pott, A.: Nonlinear functions in abelian groups and relative difference sets. Discrete
Appl. Math. 138, 177–193 (2004)

27. Renes, J., Blume-Kohout, R., Scott, A.J., Caves, C.: Symmetric Informationally
Complete Quantum Measurements. J. Math. Phys. 45, 2171–2180 (2003)

28. Roy, A., Scott, A.J.: Weighted complex projective 2-designs from bases: optimal
state determination by orthogonal measurements (2007) (quant-ph/0703025 v2)

29. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cam-
bridge (1997)

30. Schwinger, J.: Unitary operator bases. Proc. Nat. Acad. Sci. U.S.A. 46, 570–579
(1960)

31. Tadey, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices (2006)
(quant-ph/0512154 v2)

32. Waldron, S.: Generalized Welch Bound Equality Sequences Are Tight Frames.
IEEE Transactions on Information Theory 49(9), 2307–2309 (2003)

33. Welch, L.R.: Lower bounds on the maximum cross correlations of signals. IEEE
Transactions on Information Theory 20(3), 397–399 (1974)

34. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased
measurements. Annals of Physics 191, 363–381 (1989)

35. Wootters, W.K.: Picturing qubits in phase space. IBM Journal of Research and
Development 48(1), 99–110 (2004)

36. Zauner, G.: Quantendesigns – Grundzüge einer nichtkommutativen Designtheorie
(in German). PhD thesis, Universität Wien (1999)

An Efficient Quantum Algorithm for the Hidden
Subgroup Problem over Weyl-Heisenberg Groups

Hari Krovi and Martin Rötteler

NEC Laboratories America
4 Independence Way, Suite 200
Princeton, NJ 08540, U.S.A.

{krovi,mroetteler}@nec-labs.com

Abstract. Many exponential speedups that have been achieved in quan-
tum computing are obtained via hidden subgroup problems (HSPs). We
show that the HSP over Weyl-Heisenberg groups can be solved efficiently
on a quantum computer. These groups are well-known in physics and
play an important role in the theory of quantum error-correcting codes.
Our algorithm is based on non-commutative Fourier analysis of coset
states which are quantum states that arise from a given black-box func-
tion. We use Clebsch-Gordan decompositions to combine and reduce ten-
sor products of irreducible representations. Furthermore, we use a new
technique of changing labels of irreducible representations to obtain low-
dimensional irreducible representations in the decomposition process. A
feature of the presented algorithm is that in each iteration of the algo-
rithm the quantum computer operates on two coset states simultane-
ously. This is an improvement over the previously best known quantum
algorithm for these groups which required four coset states.

Keywords: quantum algorithms, hidden subgroup problem, coset states.

1 Introduction

Exponential speedups in quantum computing have hitherto been shown for only
a few classes of problems, most notably for problems that ask to extract hid-
den features of certain algebraic structures. Examples for this are hidden shift
problems [DHI03], hidden non-linear structures [CSV07], and hidden subgroup
problems (HSPs). The latter class of hidden subgroup problems has been stud-
ied quite extensively over the past decade. There are some successes such as the
efficient solution of the HSP for any abelian group [Sho97, Kit97, BH97, ME98],
including factoring and discrete log as well as Pell’s equation [Hal02], and ef-
ficient solutions for some non-abelian groups [FIM+03, BCD05]. Furthermore,
there are some partial successes for some non-abelian groups such as the dihe-
dral groups [Reg04, Kup05] and the affine groups [MRRS04]. Finally, it has been
established that for some groups, including the symmetric group which is con-
nected to the graph isomorphism problem, a straightforward approach requires a

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 70–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Efficient Quantum Algorithm 71

rather expensive quantum processing in the sense that entangling operations on
a large number of quantum systems would be required [HMR+06]. What makes
matters worse, there are currently no techniques, or even promising candidates
for techniques, to implement these highly entangling operations.

The present paper deals with the hidden subgroup problem for a class of
non-abelian groups that—in a precise mathematical sense that will be explained
below—is not too far away from the abelian case, but at the same time has some
distinct non-abelian features that make the HSP over these groups challenging
and interesting.

The hidden subgroup problem is defined as follows: we are given a function
f : G→ S from a group G to a set S, with the additional promise that f takes
constant and distinct values on the left cosets gH , where g ∈ G, of a subgroup
H ≤ G. The task is to find a generating system of H . The function f is given as
a black-box, i. e., it can only be accessed through queries and in particular whose
structure cannot be further studied. The input size to the problem is log |G| and
for a quantum algorithm solving the HSP to be efficient means to have a running
time that is poly(log |G|) in the number of quantum operations as well as in the
number of classical operations.

We will focus on a particular approach to the HSP which proved to be suc-
cessful in the past, namely the so-called standard method, see [GSVV04]. Here
the function f is used in a special way, namely it is used to generate coset states
which are states of the form 1/

√
|H |

∑
h∈H |gh〉 for random g ∈ G. The task

then becomes to extract a generating system of H from a polynomial number of
coset states (for random values of g).

A basic question about coset states is how much information about H they
indeed convey and how this information can be extracted from suitable measure-
ments.1 A fixed POVMM operates on a fixed number k of coset states at once
and if k ≥ 2 andM does not decompose into measurements of single copies, we
say that the POVM is an entangled measurement. As in [HMR+06], we call the
parameter k the “jointness” of the measurement. It is known that information-
theoretically for any group G jointness k = O(log |G|) is sufficient [EHK04].
While the true magnitude of the required k can be significantly smaller (abelian
groups serve as examples for which k = 1), there are cases for which indeed a
high order of k = Θ(log |G|) is sufficient and necessary. Examples for such groups
are the symmetric groups [HMR+06]. However, on the more positive side, it is
known that some groups require only a small, sometimes even only constant,
amount of jointness. Examples are the Heisenberg groups of order p3 for a prime
p for which k = 2 is sufficient [BCD05, Bac08a]. In earlier work [ISS07], it has
been shown that for the Weyl-Heisenberg groups order p2n+1, k = 4 is sufficient
[ISS07].

The goal of this paper is to show that in the latter case the jointness can
be improved. We give a quantum algorithm which is efficient in the input size
(given by log p and n) and which only requires a jointness of k = 2.

1 Recall that the most general way to extract classical information from quantum
states is given by means of positive operator valued measures (POVMs) [NC00].

72 H. Krovi and M. Rötteler

Our results and related work: The family of groups which we consider in the
present paper are well-known in quantum information processing under the name
of generalized Pauli groups or Weyl-Heisenberg groups [NC00]. Their importance
in quantum computing stems from the fact that they are used to define stabilizer
codes [CRSS97, Got96, CRSS98], the class of codes most widely used for the
construction of quantum error-correcting codes.

In a more group-theoretical context, the Weyl-Heisenberg groups are known
as extraspecial p-groups (actually, they constitute one of the two families of
extraspecial p-groups [Hup83]). A polynomial-time algorithm for the HSP for
the extraspecial p-groups was already given by Ivanyos, Sanselme, and Santha,
[ISS07]. Our approach differs to this approach in two aspects: first, our approach
is based on Fourier sampling for the non-abelian group G. Second, and more
importantly, we show that the jointness k, i. e., the number of coset states that
the algorithm has to operate jointly on, can be reduced from k = 4 to k = 2.
Crucial for our approach is the fact that in the Weyl-Heisenberg group the labels
of irreducible representations can be changed. This is turn can be used to “drive”
Clebsch-Gordan decompositions in such a way that low-dimensional irreducible
representations occur in the decomposition.

It is perhaps interesting to note that for the Weyl-Heisenberg groups the
states that arise after the measurement in the Fourier sampling approach (also
called Fourier coefficients) are typically of a very large rank (i. e., exponential
in the input size). Generally, large rank usually is a good indicator of the in-
tractability of the HSP, such as in case of the symmetric group when H is a
full support involution. Perhaps surprisingly, in the case of the Weyl-Heisenberg
group it still is possible to extract H efficiently even though the Fourier coef-
ficients have large rank. We achieve this at the price of operating on two coset
states at the same time. This leaves open the question whether k = 1 is pos-
sible, i. e., if the hidden subgroup H can be identified from measurements on
single coset states. We cannot resolve this question but believe that this will
be hard. Our reasoning is as follows. Having Fourier coefficients of large rank
implies that the random basis method [RRS05, Sen06] cannot be applied. The
random basis method is a method to derive algorithms with k = 1 whose quan-
tum part can be shown to be polynomial, provided that the rank of the Fourier
coefficients is constant.2 Based on this we therefore conjecture that any effi-
cient quantum algorithm for the extraspecial groups will require jointness of
k ≥ 2.

Finally, we mention that a similar method to combine the two registers in
each run of the algorithm has been used by Bacon [Bac08a] to solve the HSP
in the Heisenberg groups of order p3. The method uses a Clebsch-Gordan trans-
form which is a unitary transform that decomposes the tensor product of two
irreducible representations [Ser77] into its constituents. The main difference be-
tween the Heisenberg group and the Weyl-Heisenberg groups is that the Fourier
coefficients are no longer pure states and are of possibly high rank.

2 This can be obtained by combining the random basis method [Sen06] with the de-
randomization results of [AE07].

An Efficient Quantum Algorithm 73

Organization of the paper: In Section 2 we review the Weyl-Heisenberg
group and its subgroup structure. The Fourier sampling approach and the so-
called standard algorithm are reviewed in Section 3. In Section 4 we provide
necessary facts about the representation theory that will be required in the sub-
sequent parts. The main result of this paper is the quantum algorithm for the ef-
ficient solution of the HSP in the Weyl-Heisenberg groups presented in Section 5.
Finally, we offer conclusions in Section 6.

2 The Weyl-Heisenberg Groups

We begin by recalling some basic group-theoretic notions. Recall that the center
Z(G) of a group G is defined as the set of elements which commute with every
element of the group i.e., Z(G) = {c : [c, g] = cgc−1g−1 = e for all g ∈ G},
where e is the identity element of G. The derived (or commutator) subgroup
G′ is generated by elements of the type [a, b] = aba−1b−1, where a, b ∈ G. The
reader is invited to recall the definition of semidirect products G = N � H , see
for instance [Hup83, Ser77]. In the following we give a definition of the Weyl-
Heisenberg groups as a semidirect product and give two alternative ways of
working with these groups.

Definition 1. Let p be a prime and let n be an integer. The Weyl-Heisenberg
group of order p2n+1 is defined as the semidirect product Zn+1

p �φ Zn
p , where the

action φ in the semidirect product is defined on x = (x1, . . . , xn) ∈ Zn
p as the

(n + 1)× (n + 1) matrix given by

φ(x) =

⎛⎜⎜⎜⎜⎜⎝
1 . . . 0 0
0 1 . . . 0

.
0 . . . 1 0
x1 x2 . . . xn 1

⎞⎟⎟⎟⎟⎟⎠ . (1)

Any group element of Zn+1
p �φ Zn

p can be written as a triple (x, y, z) where x
and y are vectors of length n whose entries are elements of Zp and z is in Zp. To
relate this triple to the semidirect product, one can think of (y, z) ∈ Zn+1

p and
x ∈ Zn

p . Then, the product of two elements in this group can be written as

(x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ + x′ · y), (2)

where x · y =
∑

i xiyi is the dot product of two vectors (denoted as xy in the
rest of the paper).

Fact 1. [Hup83] For any p prime, and n ≥ 1, the Weyl-Heisenberg group is
an extraspecial p group. Recall that a group G is extraspecial if Z(G) = G′, the
center is isomorphic to Zp, and G/G′ is a vector space.

Up to isomorphism, extraspecial p-groups are of two types: groups of exponent
p and groups of exponent p2. The Weyl-Heisenberg groups are the extraspecial

74 H. Krovi and M. Rötteler

p-groups of exponent p. It was shown in [ISS07] that an algorithm to find hidden
subgroups in the groups of exponent p can be used to find hidden subgroups
in groups of exponent p2. Therefore, it is enough to solve the HSP in groups of
exponent p. In this paper, we present an efficient algorithm for the HSP over
groups of exponent p.

Realization via matrices over Zp: First, we recall that the Heisenberg group of
order p3 (which is the group of 3× 3 upper triangular matrices with ones on the
main diagonal and other entries in Zp) is a Weyl-Heisenberg group and can be
regarded as the semidirect product Z2

p � Zp. An efficient algorithm for the HSP
over this group is given in [BCD05]. Elements of this group are of the type⎛⎝1 y z

0 1 x
0 0 1

⎞⎠ . (3)

The product of two such elements is⎛⎝1 y z
0 1 x
0 0 1

⎞⎠⎛⎝1 y′ z′

0 1 x′

0 0 1

⎞⎠ =

⎛⎝1 y + y′ z + z′ + x′y
0 1 x + x′

0 0 1

⎞⎠ (4)

Thus, such a matrix can be identified with a triple (x, y, z) in Z2
p � Zp. This

matrix representation of the Heisenberg group can be generalized for any n. We
can associate a triple (x, y, z) where x, y ∈ Zn

p and z ∈ Zp with the (n+2)×(n+2)
matrix ⎛⎜⎜⎜⎜⎜⎝

1 y1 . . . yn z
0 1 . . . 0 x1
.

.
0 0 . . . 1 xn

0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ . (5)

Realization via unitary representation: Finally, there is another useful way to
represent the Weyl-Heisenberg group. The n qupit Pauli matrices form a faithful
(irreducible) representation of the Weyl-Heisenberg p-group. For any k �= 0, we
can associate with any triple (x, y, z) in Zn+1

p � Zn
p , the following matrix:

ρk(x, y, z) = ωkz
p XxZy

k , (6)

where the matrix X =
∑

u∈Zn
p
|u + 1〉〈u| is the generalized X operator and the

matrix Zk =
∑

u∈Zn
p

ωk
p |u〉〈u| is the generalized Z operator, see e. g. [NC00].

Subgroup structure: In the following we will write G in short for Weyl-Heisenberg
groups. Using the notation introduced above the center Z(G) (or G′) is the
group Z(G) = {(0, 0, z)|z ∈ Zp} and is isomorphic to Zp. As mentioned above,
the quotient group G/G′ is a vector space isomorphic to Z2n

p . This space can be

An Efficient Quantum Algorithm 75

regarded as a symplectic space with the following inner product: (x, y) · (x′, y′) =
(x · y′ − y · x′), where x, y, x′, y′ ∈ Zn

p . The quotient map is just the restriction
of the triple (x, y, z) ∈ G to the pair (x, y) ∈ Z2n

p . From Eq. (2), it follows that
two elements commute if and only if xy′− yx′ = 0. Denote the set of (x, y) pairs
occurring in H as SH i.e., for each triple (x, y, z) ∈ H , we have that (x, y) ∈ SH

and so |SH | ≤ |H |. It can be easily verified that SH is a vector space and is in
fact, a subspace of Z2n

p . Indeed, for two elements (x, y), (x′, y′) ∈ SH , pick two
elements (x, y, z), (x′, y′, z′) ∈ H and so (x+x′, y+y′, z+z′+x′y) ∈ H . Therefore,
(x + x′, y + y′) ∈ SH . To show that if (x, y) ∈ SH , then (ax, ay) ∈ SH for any
a ∈ Zp, observe that if (x, y, z) ∈ H , then (x, y, z)a = (ax, ay, az + a(a−1)

2 xy) ∈
H . Therefore, (ax, ay) ∈ SH (in fact, it can be shown that SH � HG′/G′,
but we do not need this result.) Therefore, H ≤ G is abelian if and only if
∀(x, y), (x′, y′) ∈ SH , we have that xy′ − x′y = 0. Such a space where all the
elements are orthogonal to each other is called isotropic.

Now, we make a few remarks about the conjugacy class of some subgroup
H . Consider conjugating H by some element of G, say g = (x′, y′, z′). For any
h = (x, y, z) ∈ H , we obtain

g−1hg = (−x′,−y′,−z′ + x′y′)(x, y, z)(x′, y′, z′)
= (−x′,−y′,−z′ + x′y′)(x + x′, y + y′, z + z′ + x′y)
= (x, y, z + x′y − xy′) ∈ Hg. (7)

From this we see that SHg = SH . We show next that SH actually characterizes
the conjugacy class of H . Before proving this result we need to determine the
stabilizer of H . The stabilizer HS of H is defined as the set of elements of
G which preserve H under conjugation i.e., HS = {g ∈ G|Hg = H}. From
Eq. (7), we can see that g = (x′, y′, z′) ∈ HS if and only if x′y − xy′ = 0 for
all (x, y, z) ∈ H . Thus, the stabilizer is a group such that SHS = S⊥

H , where
S⊥

H is the orthogonal space under the symplectic inner product defined above,
i.e., HS = {(x, y, z) ∈ G|(x, y) ∈ S⊥

H , z ∈ Zp}. In other words, it is obtained
by appending the pairs (x, y) ∈ S⊥

H with every possible z ∈ Zp. Therefore,
|HS | = |G′| · |S⊥

H |. Now, we can prove the following lemma.

Lemma 1. Two subgroups H1 and H1 are conjugate if and only if SH1 = SH2 .

Proof. We have already seen that if H1 and H2 are conjugates, then SH1 = SH2 .
To show the other direction, we use a counting argument ie., we show that the
number of subgroups H ′ of G such that SH′ = SH is equal to the number of
conjugates of H . First, assume that the dimension of the vector space SH1 is k.
Now, the number of conjugates of H1 is the index of the stabilizer of H1. From
the above result, the stabilizer has a size |G′||S⊥

H1
| = p · p2n−k. Therefore, the

index or the number of conjugates of H1 are p2n+1/p2n−k−1 = pk. Now, the
number of different possible subgroups H such that SH = SH1 is pk since each
of the k basis vectors of SH1 are generators of the subgroup and they can have
any z component independent of each other i.e., there are p possible choices of
z for each of the k generators.

76 H. Krovi and M. Rötteler

The property G′ = Z(G) will be useful in that it will allow us to consider only
a certain class of hidden subgroups. We show next that it is enough to consider
hidden subgroups which are abelian and do not contain G′. Recall that that H
is normal in G (denoted H � G) if g−1hg ∈ H for all g ∈ G and h ∈ H .

Lemma 2. If G′ ≤ H, then H � G.

Proof. Since G′ is the commutator subgroup, for any g1, g2 ∈ G, there exists
g′ ∈ G′ such that g1g2 = g2g1g

′. Now, let h ∈ H and g ∈ G. We have g−1hg = hg′

for some g′ ∈ G′. But since G′ ≤ H , hg′ = h′, for some h′ ∈ H . Therefore,
g−1hg = h′ and hence H � G.

Lemma 3. If H is non-abelian, then H � G.

Proof. Let h1, h2 ∈ H such that h1h2 �= h2h1. Then h1h2 = h2h1g
′ for some

g′ ∈ G′ such that g′ �= e, where e is the identity element of G. This means that
g′ ∈ H . Since G′ is cyclic of prime order, it can be generated by any g′ �= e and
hence, we have G′ ≤ H . Now, Lemma 2 implies that H � G.

From these two lemmas, we have only two cases to consider for the hidden
subgroup H : (a) H is abelian and does not contain G′ and (b) H is normal in G.
It is possible to tell the cases apart by querying the hiding function f twice and
checking whether f(e) and f(g′) are equal for some g′ �= e and g′ ∈ G′. If they are
equal then G′ ≤ H and H � G, otherwise H is abelian. If H is normal, then one
can use the algorithm of [HRT03], which is efficient if one can intersect kernels
of the irreducible representations (irreps) efficiently. For the Weyl-Heisenberg
group, the higher dimensional irreps form a faithful representation and hence
do not have a kernel. Thus, when the hidden subgroup is normal, only one
dimensional irreps occur and their kernels can be intersected efficiently and the
hidden subgroup can be found using the algorithm of [HRT03]. Therefore, we
can consider only those hidden subgroups which are abelian and moreover do
not contain G′.

Now, we restrict our attention to the case of abelian H . Finally, we need the
following two results.

Lemma 4. If H is an abelian subgroup which does not contain G′, then
|SH | = |H |.

Proof. Suppose that for some (x, y) ∈ SH there exist two different elements
(x, y, z1) and (x, y, z2) in H , then by multiplying one with the inverse of the
other we get (0, 0, z1 − z2). Since z1 − z2 �= 0, this generates G′, but by our
assumption on H , G′ � H . Therefore, |SH | = |H |.

The following theorem applies to the case when p > 2.

Lemma 5. Let H be an abelian subgroup which does not contain G′. There
exists a subgroup H0 conjugate to H, where H0 = {(x, y, xy/2)|(x, y) ∈ SH}.

An Efficient Quantum Algorithm 77

Proof. We can verify that H0 is a subgroup by considering elements (x, y, xy/2)
and (x′, y′, x′y′/2) in H0. Their product is

(x, y, xy/2) · (x′, y′, x′y′/2) = (x + x′, y + y′, xy/2 + x′y′/2 + x′y)
= (x + x′, y + y′, xy/2 + x′y′/2 + (x′y + xy′)/2)
= (x + x′, y + y′, (x + x′)(y + y′)/2), (8)

which is an element of H0. Here, we have used the fact that H is abelian i.e.,
xy′−x′y = 0, ∀(x, y), (x′, y′) ∈ SH . Now for H0, since SH0 = SH , H0 is conjugate
to H using Lemma 1.

Note that H0 can be thought of as a representative of the conjugacy class of H
since it can be uniquely determined from SH . The above lemma does not apply
for the case p = 2. When p = 2, we have that (x, y, z)2 = (2x, 2y, 2z + xy) =
(0, 0, xy). But since we assume that G′ � H , when p = 2 we must have that
xy = 0, ∀(x, y, z) ∈ H .

3 Fourier Sampling Approach to HSP

We recall some basic facts about the Fourier sampling approach to the HSP,
see also [GSVV04, HMR+06]. First, we recall some basic notions of represen-
tation theory of finite groups [Ser77] that are required for this approach. Let
G be a finite group, let C[G] to denote its group algebra, and let Ĝ be the set
of irreducible representations (irreps) of G. We will consider two distinguished
orthonormal vector space bases for C[G], namely, the basis given by the group
elements on the one hand (denoted by |g〉, where g ∈ G) and the basis given
by normalized matrix coefficients of the irreducible representations of G on the
other hand (denoted by |ρ, i, j〉, where ρ ∈ Ĝ, and i, j = 1, . . . , dρ for dρ, where
dρ denotes the dimension of ρ). Now, the quantum Fourier transform over G,
QFTG is the following linear transformation [Bet87, GSVV04]:

|g〉 →
∑
ρ∈Ĝ

√
dρ

|G|

dρ∑
i,j=1

ρij(g)|ρ, i, j〉. (9)

An easy consequence of Schur’s Lemma is that QFTG is a unitary transformation
in C|G|, mapping from the basis of |g〉 to the basis of |ρ, i, j〉. For a subgroup
H ≤ G and irrep ρ ∈ Ĝ, define ρ(H) := 1

|H|
∑

h∈H ρ(h). Again from Schur’s
Lemma we obtain that ρ(H) is an orthogonal projection to the space of vectors
that are point-wise fixed by every ρ(h), h ∈ H .

Define rρ(H) := rank(ρ(H)); then rρ(H) = 1/|H |
∑

h∈H χρ(h), where χρ

denotes the character of ρ. For any subset S ≤ G define |S〉 := 1/
√
|S|
∑

s∈S |s〉
to be the uniform superposition over the elements of S.

The standard method [GSVV04] starts from 1/
√
|G|
∑

g∈G |g〉|0〉. It then
queries f to get the superposition 1/

√
|G|
∑

g∈G |g〉|f(g)〉. The state becomes

78 H. Krovi and M. Rötteler

a mixed state given by the density matrix σG
H = 1

|G|
∑

g∈G |gH〉〈gH | if the sec-
ond register is ignored. Applying QFTG to σG

H gives the density matrix

|H |
|G|

⊕
ρ∈Ĝ

dρ⊕
i=1

|ρ, i〉〈ρ, i| ⊗ ρ∗(H),

where ρ∗(H) operates on the space of column indices of ρ. The probability dis-
tribution induced by this base change is given by P (observe ρ) = dρ|H|rρ(H)

|G| . It
is easy to see that measuring the rows does not furnish any new information:
indeed, the distribution on the row indices is a uniform distribution 1/dρ. The
reduced state on the space of column indices on the other hand can contain in-
formation about H : after having observed an irrep ρ and a row index i, the state
is now collapsed to ρ∗(H)/rρ(H). From this state we can try to obtain further
information about H via subsequent measurements.

Finally, we mention that Fourier sampling on k ≥ 2 registers can be defined
in a similar way. Here one starts off with k independent copies of the coset state
and applies QFT⊗k

G to it. In the next section, we describe the representation
theory of the Weyl-Heisenberg groups. An efficient implementation of QFTG is
shown in Appendix A.

4 The Irreducible Representations

In this section, we discuss the representation theory of G, where G ∼= Zn+1
p �Zn

p is
a Weyl-Heisenberg group. From the properties of being an extraspecial group, it
is easy to see that G has p2n one dimensional irreps and p−1 irreps of dimension
pn. The one dimensional irreps are given by

χa,b(x, y, z) = ω(ax+by)
p , (10)

where ωp = e2πi/p and a, b ∈ Zn
p . Note that

χa,b(H) =
1
|H |

∑
(x,y,z)∈H

ωax+by
p =

1
|SH |

∑
(x,y)∈SH

ωax+by
p . (11)

Since SH is a linear space, this expression is non-zero if and only if a, b ∈ S⊥
H .

Suppose we perform a QFT on a coset state and measure an irrep label. Further-
more, suppose that we obtain a one dimensional irrep (although the probability
of this is exponentially small as we show in the next section). Then this would
enable us to sample from S⊥

H . If this event of sampling one dimensional irreps
would occur some O(n) times, we would be able to compute a generating set
of S⊥

H with constant probability. This gives us information about the conjugacy
class of H and from knowing this, it is easy to see that generators for H itself
can be inferred by means of solving a suitable abelian HSP.

Thus, obtaining one dimensional irreps would be useful. Of course we cannot
assume to sample from one dimensional irreps as they have low probability of

An Efficient Quantum Algorithm 79

occurring. Our strategy will be to “manufacture” one dimensional irreps from
combining higher-dimensional irreps. First, recall that the pn dimensional irreps
are given by

ρk(x, y, z) =
∑

u∈Zn
p

ωk(z+yu)
p |u + x〉〈u|, (12)

where k ∈ Zp and k �= 0. This representation is a faithful irrep and its character
is given by χk(g) = 0 for g �= e and χk(e) = pn. In particular, χk(H) = pn/|H |.

The probability of a high dimensional irrep occurring in Fourier sampling is
very high (we compute this in Section 5). We consider the tensor product of
two such high dimensional irreps. This tensor product can be decomposed into a
direct sum of irreps of the group. A unitary base change which decomposes such
a tensor product into a direct sum of irreps is called a Clebsch-Gordan transform,
denoted by UCG. Clebsch-Gordan transforms have been used implicitly to bound
higher moments of a random variable that describes the probability distribution
of a POVM on measuring a Fourier coefficient. They have also been used in
[Bac08a] to obtain a quantum algorithm for the HSP over Heisenberg groups of
order p3, and in [Bac08b] for the HSP in the groups Dn

4 as well as for Simon’s
problem. Our use of Clebsch-Gordan transforms will be somewhat similar.

For the Weyl-Heisenberg group G, the irreps that occur in the Clebsch-Gordan
decomposition of the tensor product of high dimensional irreps ρk(g) ⊗ ρl(g)
depend on k and l. The Clebsch-Gordan transform is given by

UCG : |u, v〉 →
∑

w∈Zn
p

ω
l
2 (u+v)w
p |u− v, w〉. (13)

If k + l �= 0, then only one irrep of G occurs with multiplicity pn, namely

ρk(g)⊗ ρl(g) UCG→ Ipn ⊗ ρk+l(g). (14)

If k + l = 0, then all the one dimensional irreps occur with multiplicity one i.e.,

ρk(g)⊗ ρl(g) UCG→ ⊕a,b∈Zpχa,b(g). (15)

Note, however, that the state obtained after Fourier sampling is not ρk(g)⊗ρl(g),
but rather ρk(H)⊗ρl(H). When we apply the Clebsch-Gordan transform to this
state, we obtain one dimensional irreps χa,b(H) on the diagonal. Applying this
to ρ−l(H)⊗ ρl(H) gives us∑

(x,y,z),(x′,y′,z′)∈H

u,v,w1,w2∈Zn
p

ω
−l(yu+z)+l(y′v+z′)+ l

2 ((u+v)(w1−w2)+w1(x+x′))×
p

|u− v + x− x′, w1〉〈u− v, w2|

=
∑

(x,y,z),(x′,y′,z′)∈H

u′,w1,w2∈Zn
p

ω
l
2 (−(y+y′)u′+2(z′−z)+w1(x+x′))×
p ∑

v′

ω
l
2 (v′(w1−w2+y′−y))
p |u′ + x− x′, w1〉〈u′, w2|,

80 H. Krovi and M. Rötteler

where u′ = u− v and v′ = u + v. Since v′ does not occur in the quantum state,
the sum over v′ vanishes unless w2 = w1 + y′ − y. Therefore, the state is∑

(x,y,z),(x′,y′,z′)∈H

u′,w1∈Zn
p

ω
l
2 (−(y+y′)u′+2(z′−z)+w1(x+x′))
p |u′ + x− x′, w1〉〈u′, w1 + y′ − y|.

(16)
The diagonal entries are obtained by putting x = x′ and y = y′ and since
|H | = |SH |, we get z = z′. The diagonal entry is then proportional to∑

(x,y,z)∈H

u′,w1∈Zn
p

ωl(−yu′+w1x)
p . (17)

Up to proportionality, this can be seen to be χw1,−u′(H), a one dimensional
irrep. Although the state is not diagonal after the Clebsch-Gordan transform,
the diagonal entries correspond to one dimensional irreps.

5 The Quantum Algorithm

In this section, we present a quantum algorithm that operates on two copies
of coset states at a time and show that it efficiently solves the HSP over G =
Zn+1

p � Zn
p , where the input is n and log p. The algorithm is as follows:

1. Obtain two copies of coset states for G.
2. Perform a quantum Fourier transform on each of the coset states and measure

the irrep label and row index for each state. Assume that the measurement
outcomes are high-dimensional irreps with labels k and l. With high proba-
bility the irreps are indeed both high dimensional and k + l �= 0, when p > 2
(see the analysis below). When p = 2, there is only one high dimensional
irrep which occurs with probability 1/2 and k+l = 0 always, since k = l = 1.
We deal with this case at the end of this section. For now assume that p > 2
and k + l �= 0.

3. If −k/l is not a square in Zp, then we discard the pair (k, l) and obtain a new
sample. Otherwise, perform a unitary Uα ⊗ I : |u, v〉 → |αu, v〉, where α is
determined by the two irrep labels as α =

√
−k/l. This leads to a “change”

in the irrep label of the first state from k to −l. We can then apply the
Clebsch-Gordan transform and obtain one dimensional irreps.

4. Apply a Clebsch-Gordan transform defined as

UCG : |u, v〉 →
∑

w∈Zn
p

ω
l
2 (u+v)w
p |u− v, w〉 (18)

to these states.
5. Measure the two registers in the standard basis. With the measurement

outcomes, we have to perform some classical post-processing which involves
finding the orthogonal space of a vector space.

An Efficient Quantum Algorithm 81

Now, we present the analysis of the algorithm.

1. In step 1, we prepared the state 1
|G|
∑

g |g〉|0〉 and apply the black box Uf to
obtain the state 1

|G|
∑

g |g〉|f(g)〉. After discarding the second register, the

resulting state is |H|
|G| |gH〉〈gH |. We have two such copies.

2. After performing a QFT over G on two such copies, we measure the irrep
label and a row index. The probability of measuring an irrep label µ is given
by p(µ) = dµχµ(H)|H |/|G|, where χµ is the character of the irrep. If µ
is a one-dimensional irrep, then the character is either 0 or 1 and so the
probability becomes 0 or |H |/|G| accordingly. The character χµ(H) = 0 if
and only if µ = (a, b) ∈ S⊥

H . Therefore, the total probability of obtaining
a one dimensional irrep is |H ||S⊥

H |/|G|. Now, we have that |H | = |SH | and
so |H ||S⊥

H | = p2n since S⊥
H is the orthogonal space in Z2n

p . Therefore, the
total probability of obtaining a one dimensional irrep in the measurement
is p2n/p2n+1 = 1/p. This is exponentially small in the input size (log p).
Therefore, the higher dimensional irreps occur with total probability of 1−
1/p. Since all of them have the same χµ(H) = pn/|H |, each of them occurs
with the same probability of 1/p. Take two copies of coset states and perform
weak Fourier sampling and obtain two high dimensional irreps k and l. The
state is then |H|2

p2n ρk(H)⊗ ρl(H). In the rest, we omit the normalization |H|
pn

of each register. Therefore, the state is proportional to

ρk(H)⊗ρl(H) =
∑

(x,y,z),(x′,y′,z′)∈H

ωk(z+yu)+l(z′+y′v)
p |u+x, v+y〉〈u, v|. (19)

We can assume that k and l are such that k + l �= 0 since this happens

with probability (p − 1)/p2. Now, choose α =
√

−k
l . Since the equation

lx2 + k = 0 has at most two solutions for any k, l ∈ Zp, for any given k, l
chosen uniformly there exist solutions of the equation lx2 + k = 0 with
probability 1/2. Perform a unitary Uα : |u〉 → |αu〉 on the first copy. The
first register becomes proportional to

Uαρk(H)U †
α =

∑
(x,y,z)∈H

ωk(z+yu)
p |α(u + x)〉〈αu|

=
∑

(x,y,z)∈H,u1∈Zn
p

ω
k

α2 (z1+y1u1)
p |u1 + x1〉〈u|

= ρ k
α2

(φα(H)), (20)

where (x1, y1, z1) = φα(x, y, z) = (αx, αy, α2z) and u1 = αu. It can be
seen easily that φα is an isomorphism of G for α �= 0 and hence φα(H) is
subgroup of G. In fact, φα(H) is a conjugate of H since Sφα(H) = SH (since
if (x, y) ∈ SH , then so is every multiple of it i.e., (αx, αy) ∈ SH). Thus, we
have obtained an irrep state with a new irrep label over a different subgroup.
But this new subgroup is related to the old one by a known transformation.

82 H. Krovi and M. Rötteler

In choosing the value of α as above, we ensure that k/α2 = −l and hence
obtain one dimensional irreps in the Clebsch-Gordan decomposition.

3. Perform a Clebsch-Gordan transform UCG on the two copies of the coset
states, i.e., perform the unitary given by the action

UCG : |u, v〉 −→
∑

w∈Zn
p

ω
l
2 (u+v)w
p |u− v, w〉. (21)

The initial state of the two copies is

ρ−l(φα(H))⊗ ρl(H)

=
∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v∈Zn
p

ω−l(z1+y1u)+l(z′+y′v)
p |u + x1, v + x′〉〈u, v|.

The resulting state after the transform is∑
(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v,w1,w2∈Zn
p

ω
−l(z1+y1u)+l(z′+y′v)+ l

2 (u+v)(w1−w2)+(x1+x′)w1
p ×

|u− v + x1 − x′, w1〉〈u − v, w2|

=
∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u′,v′,w1,w2∈Zn
p

ω
−l(z1+y1

u′+v′
2)+l(z′+y′ v′−u′

2)+ l
2 (v′)(w1−w2)+(x1+x′)w1

p ×

|u′ + x1 − x′, w1〉〈u′, w2|,

where u′ = u− v and v′ = u+ v. Notice that v′ occurs only in the phase and
not in the quantum states. Therefore, collecting the terms with v′ we get∑

v′

ω
l
2 (y′−y1+w1−w2)
p . (22)

This term is non-zero only when y′ − y1 + w1 − w2 = 0. Hence w2 = w1 −
(y1 − y′). Substituting this back in the equation, we get∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u′,w1∈Zn
p

ω
l
2 [(x1+x′)w1−(y1+y′)u′−2(z1−z′)]
p

|u′ + x1 − x′, w1〉〈u′, w1 − (y1 − y′)|.

Reusing the labels u and v by putting u = u′ and v = w1 − (y1 − y′), we
obtain ∑

(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v∈Zn
p

ω
l
2 [(x1+x′)(v+(y1−y′))−(y1+y′)u−2(z1−z′)]
p

|u + x1 − x′, v + y1 − y′〉〈u, v|.

This can be written as∑
(x1,y1,z1)∈φα(H),(x′,y′,z′)∈H

u,v∈Zn
p

ω
l
2

[
(x1+x′)v−(y1+y′)u−2(z1− x1y1

2)+2(z′− x′y′
2)

]
p

|u + x1 − x′, v + y1 − y′〉〈u, v|.

An Efficient Quantum Algorithm 83

Since H is abelian, x1y
′ − x′y1 = 0. Now consider the subgroup H0 defined

in the previous section. Let g = (x̂, ŷ, ẑ) be an element such that Hg = H0.
As discussed in Sec. 2, (x̂, ŷ) are unique up to an element of S⊥

H and ẑ is
any element in Zp. Now, when (x′, y′, z′) ∈ H is conjugated with g, it gives
(x′, y′, z′+x̂y′−ŷx′) = (x′, y′, x′y′/2) ∈ H0. Therefore, z′−x′y′/2 = x′ŷ−x̂y′.
In order to obtain H0 from φα(H) we need to conjugate by φα(x̂, ŷ, ẑ). There-
fore, z1− x1y1

2 = α(ŷx1− x̂y1). Incorporating this into the above expression,
we get ∑

(x1,y1),(x′,y′)∈SH
u,v∈Zn

p

ω
l
2 [(x1+x′)v−(y1+y′)u−2(α(ŷx1−x̂y1))+2(x′ŷ−x̂y′)]
p

|u + x1 − x′, v + y1 − y′〉〈u, v|.

Now since SH is a linear space, we have that if (x, y), (x′, y′) ∈ SH , then
(x− x′, y − y′) ∈ SH . Hence, substituting x = x1 − x′, y = y1 − y′, we get∑

(x,y),(x′ ,y′)∈SH
u,v∈Zn

p

ω
l
2 [(x+2x′)v−(y+2y′)u−2(α(ŷ(x+x′)−x̂(y+y′)))+2(x′ŷ−x̂y′)]
p

|u + x, v + y〉〈u, v|.

Separating the sums over (x, y) and (x′y′) we get

∑
(x,y)∈SH ,u,v∈Zn

p

⎡⎣ ∑
(x′,y′)∈SH

ω
l[x′(v+(1−α)ŷ)−y′(u+(1−α)x̂)]
p

⎤⎦
ω

l
2 [x(v−2αŷ)−y(u−2αx̂)]
p |u + x, v + y〉〈u, v|.

Note that the term in the squared brackets is non-zero only when (v + (1−
α)ŷ, u + (1−α)x̂) lies in S⊥

H . This means that if we measure the above state
we obtain pairs (u, v) such that (u + (1− α)x̂, v + (1− α)ŷ) ∈ S⊥

H . This can
be used to determine both S⊥

H (and hence SH) and (x̂, ŷ). Repeat this O(n)
times and obtain values for u and v by measurement.

4. From the above, say we obtain n+1 values (u1, v1), . . . , (un+1, vn+1). There-
fore, we have the following vectors in S⊥

H .

(u1 + (1 − α1)x̂, v1 + (1− α1)ŷ),
(u2 + (1 − α2)x̂, v2 + (1− α2)ŷ),
...

...
(un+1 + (1 − αn+1)x̂, vn+1 + (1− αn+1)ŷ).

The affine translation can be removed by first dividing by (1−αi) and then
taking the differences since S⊥

H is a linear space. Therefore, the following
vectors lie in S⊥

H :

(u′
1, v

′
1) = (

u1

(1− α1)
− un+1

(1− αn+1)
,

v1

(1 − α1)
− vn+1

(1− αn+1)
),

84 H. Krovi and M. Rötteler

(u′
2, v

′
2) = (

u2

(1− α2)
− un+1

(1− αn+1)
,

v2

(1 − α2)
− vn+1

(1− αn+1)
),

...
...

(u′
n, v′n) = (

un

(1− αn)
− un+1

(1 − αn+1)
,

vn

(1− αn)
− vn+1

(1 − αn+1)
).

With high probability, these vectors form a basis for S⊥
H and hence we can

determine SH efficiently. This implies that the conjugacy class and hence
the subgroup H0 is known. It remains only to determine (x̂, ŷ). We can set
(x̂, ŷ) = (1 − α1)−1(u1 − u′

1, v1 − v′1) since the conjugating element can be
determined up to addition by an element of S⊥

H . H can be obtained with the
knowledge of H0 and (x̂, ŷ).

Finally, for completeness we consider the case p = 2. Assume that after Fourier
sampling we have two high dimensional irreps with states given by

ρ1(H)⊗ ρ1(H) =
∑

(x,y,z),(x′,y′,z′)∈H,u,v∈Z
n
2

(−1)z+z′+yu+y′v|u + x, v + x′〉〈u, v|.

(23)
The Clebsch-Gordan transform is given by the base change:

|u, v〉 →
∑

w∈Z
n
2

(−1)wv|u + v, w〉. (24)

Applying this to the two states, we obtain (in a similar manner as above)

∑
(x,y,z)∈H,u,v∈Z

n
2

(−1)z+vx

⎛⎝ ∑
(x′,y′,z′)∈H

(−1)uy′+vx′

⎞⎠ |u + x, v + y〉〈u, v|. (25)

The inner sum is non-zero if and only if (u, v) ∈ S⊥
H . Thus, measuring this state

gives us S⊥
H from which we can find SH . We cannot determine H directly from

here as in the case p > 2. But since we know SH , we know the conjugacy class of
H and we can determine the abelian group HG′ which contains H . This group
is obtained by appending the elements of SH with every element of G′ = Z2 i.e.,
for (x, y) ∈ SH we can say that (x, y, 0) and (x, y, 1) are in HG′. Once we know
HG′, we now restrict the hiding function f to the abelian subgroup HG′ of G
and run the abelian version of the standard algorithm to find H .

6 Conclusions

Using the framework of coset states and non-abelian Fourier sampling we showed
that the hidden subgroup problem for the Weyl-Heisenberg groups can be solved
efficiently. In each iteration of the algorithm the quantum computer operates on
k = 2 coset states simultaneously which is an improvement over the previously
best known quantum algorithm which required k = 4 coset states. We believe

An Efficient Quantum Algorithm 85

that the method of changing irrep labels and the technique of using Clebsch-
Gordan transforms to devise multiregister experiments has some more potential
for the solution of HSP over other groups. Finally, this group (at least when
p = 2) has importance in error correction. In fact, the state we obtain after
Fourier sampling and measurement of an irrep is a projector onto the code space
whose stabilizer generators are given by the generators of H . In view of this fact,
it will be interesting to study the implications of the quantum algorithm derived
in this paper to the design or decoding of quantum error-correcting codes.

Acknowledgments

We thank Sean Hallgren and Pranab Sen for useful comments and discussions.

References

[AE07] Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in
the quantum world. In: Proceedings of the 22nd Annual IEEE Conference
on Computational Complexity, pp. 129–140 (2007); Also arxiv preprint
quant-ph/0701126

[Bac08a] Bacon, D.: How a Clebsch-Gordan transform helps to solve the Heisenberg
hidden subgroup problem. Quantum Information and Computation 8(5),
438–467 (2008)

[Bac08b] Bacon, D.: Simon’s algorithm, Clebsch-Gordan sieves, and hidden sym-
metries of multiple squares (2008); Arxiv preprint quant-ph/0808.0174

[BCD05] Bacon, D., Childs, A., van Dam, W.: From optimal measurement to effi-
cient quantum algorithms for the hidden subgroup problem over semidirect
product groups. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pp. 469–478 (2005); Also arxiv preprint
quant-ph/0504083

[Bet87] Beth, T.: On the computational complexity of the general discrete Fourier
transform. Theoretical Computer Science 51, 331–339 (1987)

[BH97] Brassard, G., Høyer, P.: An exact polynomial–time algorithm for Simon’s
problem. In: Proceedings of Fifth Israeli Symposium on Theory of Com-
puting and Systems ISTCS, pp. 12–33. IEEE Computer Society Press, Los
Alamitos (1997); Also arxiv preprint quant–ph/9704027

[CRSS97] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum er-
ror correction and orthogonal geometry. Physical Review Letters 78(3),
405–408 (1997); Also arxiv preprint quant-ph/9605005

[CRSS98] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum er-
ror correction via codes over GF(4). IEEE Transactions on Information
Theory 44(4), 1369–1387 (1998); Also arxiv preprint quant-ph/9608006

[CSV07] Childs, A., Schulman, L.J., Vazirani, U.: Quantum algorithms for hidden
nonlinear structures. In: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pp. 395–404 (2007); Also preprint
arxiv:0705.2784

[DHI03] van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden
shift problems. In: Proceedings of the Symposium on Discrete Algorithms
(SODA), pp. 489–498 (2003); Also arxiv preprint quant–ph/0211140

86 H. Krovi and M. Rötteler

[EHK04] Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of
the hidden subgroup problem is polynomial. Information Processing Let-
ters 91(1), 43–48 (2004); Also arxiv preprint quant–ph/0401083

[FIM+03] Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden transla-
tion and orbit coset in quantum computing. In: Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, pp. 1–9 (2003); Also
arxiv preprint quant–ph/0211091

[Got96] Gottesman, D.: A class of quantum error-correcting codes saturating the
quantum Hamming bound. Physical Review A 54(3), 1862–1868 (1996);
Also arxiv preprint quant-ph/9604038

[GSVV04] Grigni, M., Schulman, L., Vazirani, M., Vazirani, U.: Quantum mechanical
algorithms for the nonabelian hidden subgroup problem. Combinatorica,
137–154 (2004)

[Hal02] Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and
the principal ideal problem. In: Proceedings of the 34th Annual ACM
Symposium on Theory of computing, pp. 653–658 (2002)

[HH00] Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm
and applications. In: Proc. of the 41st Annual Symposium on Foundations
of Computer Science (FOCS 2000), pp. 515–525. IEEE Computer Society,
Los Alamitos (2000)

[HMR+06] Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations of
quantum coset states for graph isomorphism. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, pp. 604–617 (2006)

[Høy97] Høyer, P.: Efficient Quantum Transforms (February 1997); Arxiv preprint
quant-ph/9702028

[HRT03] Hallgren, S., Russell, A., Ta-Shma, A.: The hidden subgroup problem
and quantum computation using group representations. SIAM Journal
on Computing 32(4), 916–934 (2003)

[Hup83] Huppert, B.: Endliche Gruppen, vol. 1. Springer, Heidelberg (1983)
[ISS07] Ivanyos, G., Sanselme, L., Santha, M.: An efficient algorithm for hidden

subgroup problem in extraspecial groups. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 586–597. Springer, Heidelberg (2007)

[Kit97] Kitaev, A.Y.: Quantum computations: algorithms and error correction.
Russian Math. Surveys 52(6), 1191–1249 (1997)

[Kup05] Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. SIAM Journal on Computing 35(1), 170–188
(2005); Also arxiv preprint quant–ph/0302112

[ME98] Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue es-
timation on a quantum computer. In: Williams, C.P. (ed.) QCQC 1998.
LNCS, vol. 1509, pp. 174–188. Springer, Heidelberg (1999)

[MRRS04] Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis
selection in Fourier sampling: hidden subgroup problems in affine groups.
In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1113–1122 (2004); Also arxiv preprint quant-ph/0503095

[MZ04] Mosca, M., Zalka, C.H.: Exact quantum Fourier transforms and discrete
logarithm algorithms. International Journal of Quantum Information 2(1),
91–100 (2004); Also arxiv preprint quant–ph/0301093

[NC00] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge (2000)

[Reg04] Regev, R.: Quantum computation and lattice problems. SIAM Journal on
Computing 33(3), 738–760 (2004)

An Efficient Quantum Algorithm 87

[RRS05] Radhakrishnan, J., Rötteler, M., Sen, P.: On the power of random bases
in fourier sampling: Hidden subgroup problem in the heisenberg group. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 1399–1411. Springer, Heidelberg (2005)

[Sen06] Sen, P.: Random measurement bases, quantum state distinction and appli-
cations to the hidden subgroup problem. In: Proceedings of the 21st An-
nual IEEE Conference on Computational Complexity, pp. 274–287 (2006);
Also arxiv preprint quant-ph/0512085

[Ser77] Serre, J.P.: Linear Representations of Finite Groups. Springer, Heidelberg
(1977)

[Sho97] Shor, P.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing 26(5),
1484–1509 (1997)

A QFT for the Weyl-Heisenberg Groups

We briefly sketch how the quantum Fourier transform (QFT) can be computed
for the Weyl-Heisenberg groups Gn = Zn+1

p � Zn
p . An implementation of the

QFT for the case where p = 2 was given in [Høy97]. This can be extended
straightforwardly to p > 2 as follows. Using Eq. (9), we obtain that the QFT for
Gn is given by the unitary operator

QFTGn
=

∑
a,b,x,y∈Zn

p ,z∈Zp

√
1

p2n+1 ωax+by
p |0, a, b〉〈z, x, y|

+
∑

a,b,x,y∈Zn
p

k∈Z∗
p,z∈Zp

√
pn

p2n+1 ωk(z+by)
p δx,a−b|k, a, b〉〈z, x, y|

=
∑

a′,b′,x′,y′∈Z
n−1
p

an,bn,xn,yn,z∈Zp

√
1

p2n−1

1
p
ωa′x′+b′y′

p ωanxn+bnyn
p

|0, a′an, b′bn〉〈z, x′xn, y′yn|

+
∑

k∈Z∗
p,a′,b′,x′,y′∈Z

n−1
p

z,an,bn,xn,yn∈Zp

√
pn−1

p2n−1

1
√

p
ωk(z+b′y′)

p ωkynbn
p δx′,a′−b′δxn,an−bn

|k, a′an, b′bn〉〈z, x′xn, y′yn|

= U ·QFTGn−1
. (26)

The matrix U is given by

U =
∑

xn,yn,an,bn∈Zp

1
p
ωanxn+bnyn

p |0〉〈0| ⊗ |an, bn〉〈xn, yn|

+
∑

xn,yn,an,bn∈Zp,k∈Z∗
p

1
√

p
ωbnyn

p δxn,an−bn |k〉〈k| ⊗ |an, bn〉〈xn, yn|

88 H. Krovi and M. Rötteler

= |0〉〈0| ⊗QFT
Zp
⊗QFTZp +

∑
k∈Z∗

p

V · (Ip ⊗QFT(k)
Zp

), (27)

where Ip is the p dimensional identity matrix,

V =
∑

u,v∈Zp

|u + v, v〉〈u, v|, (28)

and
QFT(k)

Zp
=

1
√

p

∑
u,v∈Zp

ωkuv
p |u〉〈v|. (29)

From Eq. (27) and recursive application of Eq. (26) we obtain the efficient
quantum circuit implementing QFTGn

shown in Figure 1.

y1

x1

..

.

yn

xn

z QFT

QFT

..

.

�

P

�

QFT

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

QFT

�

P

�

QFT

..

.

�

�

�

· · ·

· · ·

· · ·

· · ·

· · ·

. . .
�

�

�

Fig. 1. QFT for the Weyl-Heisenberg group. The QFT gates shown in the circuit are
QFTs for the cyclic groups Zp. Each of these QFTs can be implemented approximately
[Kit97, HH00] or exactly [MZ04], in both cases with a complexity bounded by O(log2 p).
It should be noted that the wires in this circuit are actually p-dimensional systems.
The meaning of the controlled gates where the control wire is an open circle is that the
operation is applied to the target wire if and only if the control wire is in the state |0〉.
The meaning of the controlled P gates where the control wire is a closed circle here
means that the gate Pk is applied in case the control wire is in state |k〉 with k �= 0,
and P0 = Ip. Here Pk is the permutation matrix for which QFT(k) = PkQFT holds.
The complexity of this circuit can be bounded by O(n log2 p).

Computing Equiangular Lines in Complex Space

Markus Grassl

Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences, Innsbruck, Austria

Markus.Grassl@oeaw.ac.at

Abstract. We consider the problem of finding equiangular lines in com-
plex space, i. e., sets of unit vectors such that the modulus of the inner
product between any two vectors is constant. We focus on the case of
d2 such vectors in a space of dimension d which corresponds to so-called
SIC-POVMs. We discuss how symmetries can be used to simplify the
problem and how the corresponding system of polynomial equations can
be solved using techniques of modular computation.

1 Introduction

The problem of finding equiangular lines has mainly been studied in Euclidean
space (see, e. g., [15]), while much less is known for complex space. Equiangular
lines in complex space are given by a set {v(1), . . . , v(m)} of m unit vectors in Cm

such that the modulus of the inner product between any two vectors is constant,
i. e.,

|〈v(i)|v(j)〉|2 =

{
1 for i = j,
c for i �= j.

(1)

Here we focus on the case of d2 equiangular vectors, so-called SIC-POVMs, for
which the condition reads

|〈v(i)|v(j)〉|2 =

{
1 for i = j,

1
d+1 for i �= j.

(2)

These sets of equiangular lines have applications in different areas, for example,
they give rise to an optimal POVM for quantum state tomography [9]. In his
thesis, Zauner [18] provides algebraic solutions for d = 2, 3, 4, 5, and numerical
solutions for d = 6 and d = 7. An algebraic solution in dimension d = 8 has been
constructed by Hoggar [13, Example 8]. An explicit expression can be found in
[18]. Using connections to the theory of tight frames, numerical solutions for
(2) up to dimension 45 have been found [16]. It has been conjectured that SIC-
POVMs exists for all dimensions [18,16,1]. Additional algebraic solutions for
d = 7 and d = 19 have been found by Appleby [1]. His construction has been
further investigated by Khatirinejad [14] who showed that it is unlikely that the
construction based on the Legendre symbol can be generalized to other prime
dimensions. The case of SIC-POVMs in prime dimension has also been studied

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 89–104, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 M. Grassl

by Flammia [8]. The first solution for a non prime-power dimension, d = 6, was
given by Grassl [10]. Solutions for dimensions d = 8, 9, 10, 11, 12, 13, and 15 are
discussed in [11,12].

Here we mainly focus on the techniques that can be used for computing
equiangular lines. We illustrate them constructing a new solution for d = 12.

2 The General Case

In the most general case, we would directly try to solve eq. (1) for a set of m
vectors in Cd. In order to be able to express the inner product and squared
modulus as polynomials, we use 2d real variables per vector, i. e.,

v(j) =
(
a
(j)
1 + ib

(j)
1 , . . . , a

(j)
d + ib

(j)
d

)
,

where i2 = −1. For d = 2 and m = d2 = 4, we get the following vectors:

v(1) =
(
a
(1)
1 + ib

(1)
1 , a

(1)
2 + ib

(1)
2

)
v(2) =

(
a
(2)
1 + ib

(2)
1 , a

(2)
2 + ib

(2)
2

)
v(3) =

(
a
(3)
1 + ib

(3)
1 , a

(3)
2 + ib

(3)
2

)
v(4) =

(
a
(4)
1 + ib

(4)
1 , a

(4)
2 + ib

(4)
2

)
Since a unitary change of basis does not change the inner product between the
vectors, without loss of generality, we can choose v(1) = (1, 0). Furthermore,
we can multiply any vector by a complex value of modulus one such that the
first coordinate is real and positive, i. e., b

(j)
1 = 0 and a

(j)
1 = 1/

√
c. Finally, we

can multiply the second coordinate of all vectors by the same complex value of
modulus one such that the second coordinate of v(2) is real, i. e., b

(2)
2 = 0. While

it is not difficult to solve the resulting system of polynomial equations for d = 2,
already the case d = 3 becomes hard for m > 4. In order to simplify the problem,
we impose some symmetry.

3 Weyl-Heisenberg Symmetry

It has been conjectured that SIC-POVMs which are group-covariant with re-
spect to the Weyl-Heisenberg group exist in any dimension [18,16]. The Weyl-
Heisenberg group Hd is a finite subgroup with d3 elements of the group of unitary
matrices U(d). The group Hd is generated by the following two operators

X :=
d−1∑
j=0

|j + 1〉〈j| and Z :=
d−1∑
j=0

ωj
d|j〉〈j|, (3)

where ωd := exp(2πi/d) is a primitive complex d-th root of unity and the cyclic
shift X is modulo d. In (3) we have used bra-ket notation from quantum in-
formation where |j〉 denotes the j-th basis vector as a column vector. The cor-
responding row vector is denoted by 〈j|. Each element of Hd can be uniquely

Computing Equiangular Lines in Complex Space 91

written as ωc
dX

aZb with a, b, c ∈ {0, . . . , d − 1}. Two elements ωc
dX

aZb and
ωc′

d Xa′
Zb′

commute iff ab′ − a′b ≡ 0 mod d. The center ζ(Hd) of the group Hd

is generated by ωdI, where I denotes the identity matrix. Ignoring the global
phase factor corresponding to the center ζ(Hd), the group Hd is isomorphic to
the direct product of two cyclic groups of order d, i. e., Hd/ζ(Hd) ∼= Zd × Zd

where Zd := Z/dZ denotes the ring of integers modulo d. The matrices XaZb are
mutually orthogonal with respect to the trace inner product and form a vector
space basis of all d× d matrices.

The ansatz is now to construct a SIC-POVM that is the orbit under Hd, i. e.,

v(a,b) := XaZbv(0) for a, b = 0, . . . , d− 1

and |〈v(a,b)|v(a′,b′)〉|2 =

{
1 for (a, b) = (a′, b′),
1/(d + 1) for (a, b) �= (a′, b′),

(4)

where we again use 2d real variables x0, . . . , x2d−1 for the fiducial vector v(0) =
(x0 + ix1, . . . , x2j + ix2j+1, . . . , x2d−2 + ix2d−1). Imposing the symmetry reduces
the number of variables from O(d3) to O(d). The inner product does not change
if we multiply v(0) by a complex number of modulus one. Hence, without loss of
generality, we can choose the first coordinate to be real, i. e., x1 = 0. From (4)
we get a system of polynomial equations for the 2d− 1 variables which we can
solve using MAGMA [3] for dimension d = 3 and d = 4.

But already the case d = 5 gets rather complicated. Therefore we will use
some additional symmetry to further simplify the problem.

4 Zauner’s Conjecture

Based on the results for small dimension, Zauner [18] has conjectured that one
can always find a SIC-POVM that possesses an additional symmetry of order
three that stabilizes the fiducial vector v(0). This additional symmetry is a par-
ticular element of the normalizer of Hd in the full unitary group, which is known
as the Jacobi group Jd [10,11] or Clifford group [1]. The Clifford group is gener-
ated by the Fourier matrix

DFTd =
1√
d

d−1∑
j,k=0

ωjk
d |j〉〈k|,

and a diagonal matrix Pd which is defined as follows:

Pd =
d−1∑
j=0

ω
j2/2
d |j〉〈j| for d even,

Pd =
d−1∑
j=0

ω
j(j−1)/2
d |j〉〈j| for d odd.

92 M. Grassl

The action of Jd on Hd modulo the center via conjugation is isomorphic to
SL(2, Zd), the group of 2 × 2 matrices over the integers modulo d with unit
determinant. Appleby [1] has verified that indeed all numerical solutions reported
in [16] have a symmetry that is conjugated to the following element of the Clifford
group given by Zauner [18, Section 3.4]:

S = α
d−1∑

r,s=0

ω
2rs+(d+1)s2

2d |r〉〈s|,

where α is a normalization factor such that S3 = I. Based on his analysis
of the numerical solutions, Appleby conjectured that any SIC-POVM that is
covariant with respect to the Weyl-Heisenberg group would possess an additional
symmetry that is conjugated to Zauner’s element S. However, the solution for
d = 12 given in [11] has an order-three symmetry that is not conjugated to
Zauner’s element. While this provides a counter-example to Appleby’s strongest
conjecture [1, Conjecture C], it remains open whether Zauner’s conjecture is true
that we can always find a solution starting with an eigenvector of S.

Compared to the ansatz in (4), we replace the general fiducial vector by a
generic vector in one of the three eigenspaces of S. Zauner has shown that the
dimension of these eigenspaces is m − 1, m, or m + 1, where m =
d/3� [18].
Hence the number of variables is reduced by a factor of approximately three.
For d = 12 we get a system of 15 polynomial equations in 9 variables over the
cyclotomic field Q(ω24). We did not succeed in directly solving this system of
polynomial equations using the built-in functions of a computer algebra system
such as MAGMA [3]. One of the reasons for this is that the coefficients of the
polynomials in the initial system of equations have up to 40 digits.

5 Modular Techniques for Solving Polynomial Equations

One way of solving systems of polynomial equations is to use Gröbner bases
[5], despite the fact that the running time of an algorithm for computing a
Gröbner basis is in most of the cases exponential. The computer algebra system
MAGMA [3] provides both a version of Buchberger’s algorithm [4] and the so-
called F4 algorithm of Faugère [6]. The latter uses linear algebra for the reduction
of the polynomials, which is in many cases faster, but uses more memory. For
polynomial rings over the rationals, modular techniques can be used for the
linear algebra step, i. e, computation modulo several primes and recombining
the results. This technique can also be applied when the polynomials are defined
over a number field Q(θ). For this, the element θ is replaced by a new variable y
and the minimal polynomial f(y) of θ is added to the equations. The algorithm
implemented in MAGMA uses this substitution by default.

As already mention, we have not been able to compute a Gröbner basis of
our polynomials using the built-in algorithms of MAGMA. It turned out that the
intermediate results have very large coefficients so that many primes have to be
used. Already the second step of the F4 algorithm uses more than 300 primes,
and the coefficients have more than 2200 digits.

Computing Equiangular Lines in Complex Space 93

A different approach to use modular algorithms for computing Gröbner bases
is presented in [2]. The idea is to compute a Gröbner basis (GB) over prime
fields Z/pZ and lift the result to Q. For this, one can use a single prime number
p and p-adic lifting, or many primes and Chinese remainder lifting [2, Section 6].
The disadvantage of the p-adic lifting is that in addition to the GB, the change
of basis for the corresponding ideal has to be computed, i. e., the polynomials of
the GB must be expressed in terms of the original generators. Another problem
that applies to both techniques is that for some primes the result of the modular
computation does not equal the basis that is obtained by reducing the coefficients
of the GB over Q modulo p, e. g., if p divides one of the denominators. However,
it can be shown that for a given ideal, only a finite number of primes yield
an incorrect result. The criteria given in [2] allow to decide for any pair of
primes whether one of them is bad. Unfortunately, the computational complexity
for checking these criteria is high as the Hilbert series of the ideal has to be
computed. For practical purposes it turns out that we do not need to check the
criteria, in particular, if we are only interested in solving a system of equations.
In this case, we can always check whether a solution of the final system is also
a solution for the initial system.

For our system, the computation of a single modular Gröbner basis using
MAGMA V.2-14 on AMD Opteron processors (2.4 to 2.8 GHz) took about 40
hours and almost 17 GB of memory. In total we have used more than 300 primes
with about 23 bit each, so the computation time would have been more than one
CPU year. While it was not possible to reconstruct the full GB using only a few
primes, it turned out that we could reconstruct some of the polynomials. Adding
these polynomials to the initial system of equations reduced the computing time
for a single modular GB to less than 2 hours, then further to less than 30 minutes,
and finally down to a few seconds. The final GB with respect to graded reverse
lexicographic (grevlex) order has 349 polynomials. Only 10 polynomials have
coefficients whose numerator and denominator have less than 100 digits, the
maximal numerators/denominators have almost 1000 digits.

The strategy is summarized as follows:

1. Let F = {f1, . . . , fm} ⊂ Q[x] denote the polynomials from the system of
equations fi = 0 and set B = { }, � = 1.

2. In step �, choose a new prime number p� and compute a reduced Gröbner ba-
sis Gp�

= {g(p�)
1 , . . . , g

(p�)
m } of the ideal generated by (F ∪B)p�

⊂ (Z/p�Z)[x].
Here (S)p�

denotes the set of polynomials obtained by reducing the coeffi-
cients of the polynomials in S ⊂ Q[x] modulo p�.

3. Compute the polynomials GN = {g(N)
1 , . . . , g

(N)
m } ⊂ (Z/NZ)[x] where N =

p1 · · · p� using the Chinese remainder theorem. A necessary condition to avoid
bad prime numbers is that all modular Gröbner bases Gp�

must have the same
number of polynomials, and the leading monomials of the corresponding
polynomials must be equal. If this is not the case, restart using different
prime numbers.

4. Try to reconstruct the polynomials gi ∈ Q[x] from g
(N)
i ∈ (Z/NZ)[x]. For

this we have to invert the map ψN : Q → Z/NZ for all coefficients. The

94 M. Grassl

command RationalReconstruction in MAGMA checks whether a ∈ Z/NZ
has a unique pre-image ψ−1

N (a) ∈ Q and computes it (see, e. g., [17]). Add
all polynomials gi ∈ Q[x] that have a unique reconstruction to the set B.

5. While there is a polynomial g
(N)
i that cannot be reconstructed, increase �

and goto Step 1.

In the next step, a Gröbner basis with respect to lexicographic order is com-
puted using the FGLM algorithm [7] of MAGMA in about 4 hours. The final
Gröbner basis contains 10 polynomials, some of which have coefficients with
more than 18000 digits. The polynomials are of the form

x1+ G1(x9, x10) = F1

x2+ G2(x9, x10) = F2

x3+ G3(x9, x10) = F3

x4+ G4(x9, x10) = F4

x5+ G5(x9, x10) = F5

x6+ G6(x9, x10) = F6

x2
7 + x7H7(x9, x10)+ G7(x9, x10) = F7

x8+ G8(x9, x10) = F8

x144
9 + G9(x9, x10) = F9

x4
10 − 4x2

10 + 1 = F10,

where the degree of the polynomials Gi(x9, x10) and H7(x9, x10) in the vari-
ables x9 and x10 is at most 143 and 3, respectively. The polynomial F10 is the
minimal polynomial of θ24 = ω24 + 1/ω24, generating the real subfield Q(θ24)
of the cyclotomic field Q(ω24). Over Q(θ24), the polynomial F9(x9, θ24) has six
irreducible factors of degree 24. Using one of the factors to define the field ex-
tension Q(θ24, ρ9) we obtain a number field of absolute degree 96. In the next
step we solve the quadratic equation F7(x7, ρ9, θ24), yielding the number field
Q(θ24, ρ9, ρ7) of absolute degree 192. This field has signature (96, 48), i. e., it has
a real embedding. This is important as we are only interested in real solutions
for the variables xi, while the variety corresponding to the system of polynomial
equations is defined over the algebraic closure, i. e., the complex field C. In order
to express the fiducial vector, we have to adjoin the imaginary unit, hence the
solution is over the field K = Q(θ24, ρ9, ρ7,

√
−1) of absolute degree 384. The

minimal polynomial of a random primitive element of this field has coefficients
whose numerators/denominators have several hundred digits.

In order to simplify the representation of the field and thereby the represen-
tation of the solution, we use MAGMA to find subfields of small degree. This
yields the following representation of a number field that contains at least one
solution for d = 12:

L = Q(
√

2,
√

3,
√

13, Θ1,

√√
13− 1,

√√
13− 3,

√
−1). (5)

Computing Equiangular Lines in Complex Space 95

Here Θ1 is a real solution of the equation Θ3
1−12Θ1+10 = 0. Note that the field

L in (5) has only degree 192, while the solution was found in the field K of degree
384. This simplification is due to the fact that we consider a fiducial vector v(0)

that is not normalized. The expressions for v(0) are given in the appendix.
Analyzing the resulting set of equiangular lines in dimension d = 12 we find

that it has indeed an additional symmetry of order three given by the matrix
S of Zauner. As this is the only symmetry it follows that we obtain at least
|SL(2, Z12)|/3 = 384 different SIC-POVMs which have a symmetry of order
three that is conjugated to the matrix S.

Note that the previous solution for dimension d = 12 given in [11, Section 4.1]
has also a symmetry of order three, but that symmetry T12 is not conjugated
to the symmetry S. This follows from the fact that the multiplicities of the
eigenvalues of T12 are 3, 3, and 6, whereas Zauner’s matrix S has multiplicities
3, 4, and 5. Moreover, the fiducial vector given in [11, Table 2] has a much more
compact representation.

6 Conclusions

Using modular techniques we have been able to compute a Gröbner basis for
the system of polynomial equations corresponding to a SIC-POVM, i. e., a set
of 144 equiangular lines in C12 which have the matrix S of Zauner as additional
symmetry. This provides additional support to Zauner’s conjecture that this
symmetry can be used to construct SIC-POVMs in any dimension. So far, the
defining equations and the representation of the solutions are too complicated
to derive a generalization to other dimensions. The next open case is d = 14,
and we hope that the techniques illustrated here enable us to find a solution for
this case as well.

Acknowledgments

The author would like to thank the Institut für Algorithmen und Kognitive
Systeme at Universität Karlsruhe (Germany) for kindly permitting to use their
computer resources for the computations.

References

1. Appleby, D.M.: SIC-POVMs and the Extended Clifford Group. Journal of Mathe-
matical Physics 46, 052107 (2005); Preprint quant-ph/0412001

2. Arnold, E.A.: Modular Algorithms for Computing Gröbner Bases. Journal of Sym-
bolic Computation 35(4), 403–419 (2003)

3. Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User
Language. Journal of Symbolic Computation 24(3–4), 235–266 (1997)

4. Buchberger, B.: A Theoretical Basis for the Reduction of Polynomials to Canonical
Forms. ACM SIGSAM Bulletin 10(3), 19–29 (1976)

96 M. Grassl

5. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer,
New York (1992)

6. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra 139(1–3), 61–88 (1999)

7. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computations of Zero-
dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Compu-
tation 16(4), 329–344 (1993)

8. Flammia, S.T.: On SIC-POVMs in Prime Dimensions. Journal of Physics A 39(43),
13483–13493 (2006); Preprint quant-ph/0605050

9. Flammia, S.T., Silberfarb, A., Caves, C.M.: Minimal Informationally Complete
Measurements for Pure States. Foundations of Physics 35(12), 1985–2006 (2005);
Preprint quant-ph/0404137

10. Grassl, M.: On SIC-POVMs and MUBs in Dimension 6. In: Proceedings ERATO
Conference on Quantum Information Science 2004 (EQIS 2004), Tokyo, pp. 60–61
(September 2004); Preprint quant-ph/0406175

11. Grassl, M.: Tomography of Quantum States in Small Dimensions. Electronic Notes
in Discrete Mathematics 20, 151–164 (2005)

12. Grassl, M.: Finding Equiangular Lines in Complex Space. Talk at the MAGMA
2006 Conference, Technische Universität Berlin (July 2006)

13. Hoggar, S.G.: t-Designs in Projective Spaces. European Journal of Combinatorics 3,
233–254 (1982)

14. Khatirinejad, M.: On Weyl-Heisenberg Orbits of Equiangular Lines. Journal of
Algebraic Combinatorics 28(3), 333–349 (2007) (Published online November 6,
2007)

15. Lemmens, P.H.W., Seidel, J.J.: Equiangular Lines. Journal of Algebra 24(3), 494–
512 (1973)

16. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric Information-
ally Complete Quantum Measurements. Journal of Mathematical Physics 45(6),
2171–2180 (2004); Preprint quant-ph/0310075

17. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P -adic Reconstruction of Rational
Numbers. ACM SIGSAM Bulletin 16(2), 2–3 (1982)

18. Zauner, G.: Quantendesigns: Grundzüge einer nichtkommutativen Designtheorie.
Dissertation, Universität Wien (1999)

Appendix

Below we list the components vi of the non-normalized fiducial vector v(0) =
(v1, . . . , v12), where Θ1 is a real solution of Θ3

1 − 12Θ1 + 10 = 0 and i2 = −1.

v1= 61018151288640

v2=

((
16454168751

√
312(4−

√
13)+47390453990

√
78(

√
13−1)−150615625836

√
78(

√
13−3)

+476309407899
√

24(4−
√

13)+178740295623
√

104(4−
√

13)−6550417786
√

156(4−
√

13)−200574075210
√

78

+2171251706
√

6(
√

13−1)+7529062602
√

26(
√

13−1)+57774655044
√

39(
√

13−1)

−214365468304
√

6(
√

13−3)−296443549050
√

26(
√

13−3)−292212076266
√

39(
√

13−3)

+1462364383779
√

8(4−
√

13)−32306974726
√

12(4−
√

13)+288116397432
√

52(4−
√

13)−920784383298
√

6

−65280647370
√

26−236802250056
√

39+18984505410
√

2(
√

13−1)−89743882176
√

3(
√

13−1)

+64219197876
√

13(
√

13−1)−1210153009962
√

2(
√

13−3)−854131510830
√

3(
√

13−3)

−564912731370
√

13(
√

13−3)+886418028756
√

4(4−
√

13)−3175132080354
√

2−2214035946096
√

3

Computing Equiangular Lines in Complex Space 97

−782921827236
√

13−331481255040
√√

13−1−2116117476798
√√

13−3−1175644168764
)

Θ2
1

+
(
261285520014

√
312(4−

√
13)+217409051218

√
78(

√
13−1)−622316394570

√
78(

√
13−3)

+1400420673054
√

24(4−
√

13)−77047066524
√

104(4−
√

13)+633787226572
√

156(4−
√

13)

−611561015256
√

78−582751308854
√

6(
√

13−1)+11268257814
√

26(
√

13−1)+151941836640
√

39(
√

13−1)

−1715193142130
√

6(
√

13−3)−455563942290
√

26(
√

13−3)−926400471348
√

39(
√

13−3)

+1572951646968
√

8(4−
√

13)+1182760486024
√

12(4−
√

13)+491208218736
√

52(4−
√

13)

−2382877556280
√

6−525308225280
√

26−750058129428
√

39+127877818926
√

2(
√

13−1)

−264092706384
√

3(
√

13−1)+100408016484
√

13(
√

13−1)−1885983791250
√

2(
√

13−3)

−2558306038236
√

3(
√

13−3)−814865740884
√

13(
√

13−3)+152263837284
√

4(4−
√

13)−5651397155352
√

2

−2529045217452
√

3−2261705398908
√

13+1107438540
√√

13−1−2431312258596
√√

13−3

−2394241466916
)

Θ1−76485755454
√

312(4−
√

13)−18112893910
√

78(
√

13−1)+833223741870
√

78(
√

13−3)

−4194444816042
√

24(4−
√

13)−2615948219322
√

104(4−
√

13)−612061589596
√

156(4−
√

13)

+1194861591888
√

78−1790482702138
√

6(
√

13−1)−522547672758
√

26(
√

13−1)

−856190279844
√

39(
√

13−1)+1475794800974
√

6(
√

13−3)+2058789844194
√

26(
√

13−3)

+2449219436712
√

39(
√

13−3)−12685094068842
√

8(4−
√

13)−1362249350176
√

12(4−
√

13)

−1458981200556
√

52(4−
√

13)+3249228240648
√

6−115720418712
√

26+127070102184
√

39

+1349248210830
√

2(
√

13−1)+2477933969940
√

3(
√

13−1)−9103835640
√

13(
√

13−1)

+6757060637730
√

2(
√

13−3)+6316192474800
√

3(
√

13−3)+4731647487060
√

13(
√

13−3)

−8516766878568
√

4(4−
√

13)+13033338017544
√

2+24092955961152
√

3+3147389886912
√

13

−1384757681112
√√

13−1+21043552558236
√√

13−3+3686540539032

)
i+
(
131613425423

√
312(4−

√
13)

−88551276122
√

78(
√

13−1)−142142839110
√

78(
√

13−3)+375887075759
√

24(4−
√

13)

+453389075337
√

104(4−
√

13)+231627929636
√

156(4−
√

13)+21828322638
√

78+481486852054
√

6(
√

13−1)

−198169198230
√

26(
√

13−1)+126014805704
√

39(
√

13−1)−448454701006
√

6(
√

13−3)

−581300086716
√

26(
√

13−3)+18771974994
√

39(
√

13−3)+1728489498177
√

8(4−
√

13)

+752422831472
√

12(4−
√

13)+615432666246
√

52(4−
√

13)+279497636574
√

6+351661391322
√

26

+212102566188
√

39+1208292243366
√

2(
√

13−1)−209569880260
√

3(
√

13−1)+19112768400
√

13(
√

13−1)

−1996399994160
√

2(
√

13−3)−759696906722
√

3(
√

13−3)−505441691178
√

13(
√

13−3)

+2891717726586
√

4(4−
√

13)+411912780474
√

2−63843827580
√

3+3662516664
√

13

+701727865644
√√

13−1−3024753476550
√√

13−3+234414217440
)

Θ2
1+
(
485953705408

√
312(4−

√
13)

−77314369138
√

78(
√

13−1)−536153615922
√

78(
√

13−3)+1762174555492
√

24(4−
√

13)

+865570530858
√

104(4−
√

13)+591990607756
√

156(4−
√

13)−76032122904
√

78+975655405790
√

6(
√

13−1)

−338796465690
√

26(
√

13−1)+553054838164
√

39(
√

13−1)−1142564272538
√

6(
√

13−3)

−866657902062
√

26(
√

13−3)−467801756460
√

39(
√

13−3)+3797772147546
√

8(4−
√

13)

+2110836625768
√

12(4−
√

13)+870804592512
√

52(4−
√

13)+872674965552
√

6+1088385539448
√

26

+831899830620
√

39+2039495559894
√

2(
√

13−1)−1137607262324
√

3(
√

13−1)+470657563224
√

13(
√

13−1)

−1327088115054
√

2(
√

13−3)−3498722425900
√

3(
√

13−3)−1058047600620
√

13(
√

13−3)

+4507866532572
√

4(4−
√

13)−719522191128
√

2−304693140492
√

3−160741716228
√

13

−808216646952
√√

13−1−4988505234180
√√

13−3+2487569153940
)

Θ1−656255268622
√

312(4−
√

13)

+351457959010
√

78(
√

13−1)+236345270010
√

78(
√

13−3)−726791099086
√

24(4−
√

13)

−3337508108166
√

104(4−
√

13)−925162539748
√

156(4−
√

13)−470321980896
√

78

−2029375456394
√

6(
√

13−1)+1699183330206
√

26(
√

13−1)−198562829152
√

39(
√

13−1)

+2426964564362
√

6(
√

13−3)+1152493002762
√

26(
√

13−3)−780968811684
√

39(
√

13−3)

−13567726519386
√

8(4−
√

13)−3503131757008
√

12(4−
√

13)−986748236148
√

52(4−
√

13)

−1333270036176
√

6−3105402077496
√

26−2125863620448
√

39−9982957572510
√

2(
√

13−1)

−36938218720
√

3(
√

13−1)+210082066860
√

13(
√

13−1)+2482683986250
√

2(
√

13−3)

+796530472660
√

3(
√

13−3)+3521848188000
√

13(
√

13−3)−6897583443504
√

4(4−
√

13)+9315916177152
√

2

+3878857592376
√

3−862614219384
√

13−3150102399756
√√

13−1+23829222568008
√√

13−3

+7780537270896

98 M. Grassl

v3=

((
139285184364

√
78(

√
13−1)+131930836488

√
78−147485629512

√
6(

√
13−1)

+49195045740
√

26(
√

13−1)+16613832912
√

39(
√

13−1)+976183494312
√

6−295192621944
√

26

−68424768396
√

39+204107810712
√

2(
√

13−1)+393914221584
√

3(
√

13−1)−126420937752
√

13(
√

13−1)

−981357553800
√

2−316722878940
√

3+128818185732
√

13+895795493736
√√

13−1−1127988040140
)

Θ2
1

+
(
569907388620

√
78(

√
13−1)+309663347508

√
78−1283601293208

√
6(

√
13−1)

+296801047668
√

26(
√

13−1)+292036518720
√

39(
√

13−1)−926166269964
√

6−877793935176
√

26

−894131968788
√

39−275676785280
√

2(
√

13−1)+128811390552
√

3(
√

13−1)−227120191392
√

13(
√

13−1)

+2252150700696
√

2+429274655004
√

3+1747850662476
√

13+2168480817360
√√

13−1−2823852974436
)

Θ1

−545489448408
√

78(
√

13−1)−1120807155228
√

78−569984826528
√

6(
√

13−1)−422058557148
√

26(
√

13−1)

−522845214744
√

39(
√

13−1)−1953716627148
√

6+1601894333772
√

26+810795451416
√

39

−918181829604
√

2(
√

13−1)−1341924188592
√

3(
√

13−1)+1167531821808
√

13(
√

13−1)

+17969533018476
√

2+7563645288888
√

3−806813224272
√

13−10018467042792
√√

13−1+9332185881408

)
i

+
(

−54431200792
√

78(
√

13−1)−260181139440
√

78+421573853012
√

6(
√

13−1)

−220722412968
√

26(
√

13−1)−9926924408
√

39(
√

13−1)+1330427190144
√

6+137956773480
√

26

+562840700988
√

39+1724896803708
√

2(
√

13−1)+269745720088
√

3(
√

13−1)−186585492432
√

13(
√

13−1)

−1529086474968
√

2−1611741636804
√

3−432827297340
√

13+1891035603600
√√

13−1+2072219149572
)

Θ2
1

+
(
123242131624

√
78(

√
13−1)−629423531592

√
78+538898127820

√
6(

√
13−1)−153671692320

√
26(

√
13−1)

+258331417808
√

39(
√

13−1)+2483733732792
√

6+510466739628
√

26+1480412324364
√

39

+1634833517148
√

2(
√

13−1)+420799452320
√

3(
√

13−1)+120592839720
√

13(
√

13−1)−288249093444
√

2

−3477795150804
√

3−1441005667356
√

13+1103401094016
√√

13−1+1046895667428
)

Θ1

+680271684356
√

78(
√

13−1)+1535540157276
√

78−3286811550724
√

6(
√

13−1)

+1808776281456
√

26(
√

13−1)+171008023768
√

39(
√

13−1)+952537513356
√

6−2410441570884
√

26

−3236183383632
√

39−10865629931832
√

2(
√

13−1)−275830972976
√

3(
√

13−1)

+2431813069824
√

13(
√

13−1)+28226661439548
√

2+15801032567424
√

3+4492371086184
√

13

−14482308183096
√√

13−1−3903632907096

v4=

((
−731915712552

√
78(

√
13−3)+125519540184

√
78−2210765462464

√
6(

√
13−3)

−722872066380
√

26(
√

13−3)−797653767444
√

39(
√

13−3)+458077199424
√

6+323269220712
√

26

−366532023072
√

39−2555517112980
√

2(
√

13−3)−3878884987380
√

3(
√

13−3)−508596806388
√

13(
√

13−3)

−108644753568
√

2−197578285008
√

3−100156084800
√

13−4395208196964
√√

13−3+911613168960
)

Θ2
1

+
(

−1488974296632
√

78(
√

13−3)+252967696776
√

78−3042281257184
√

6(
√

13−3)

−2064024790056
√

26(
√

13−3)−1984448071968
√

39(
√

13−3)−1522918860216
√

6+466687258656
√

26

−1039084227960
√

39−5313676608864
√

2(
√

13−3)−7546811272416
√

3(
√

13−3)

−2218271010264
√

13(
√

13−3)−1373559746208
√

2+3006982158648
√

3+724293724632
√

13

−12927479536296
√√

13−3+2976810231720
)

Θ1+1985716744632
√

78(
√

13−3)−127930187208
√

78

+3958478787224
√

6(
√

13−3)+2767825654224
√

26(
√

13−3)+5971067624712
√

39(
√

13−3)

+2083313767704
√

6−462949809576
√

26+1710278238192
√

39+14037954330816
√

2(
√

13−3)

+30145415042808
√

3(
√

13−3)+2388741052008
√

13(
√

13−3)+7723861751736
√

2+15805866028368
√

3

−127993749792
√

13+23433143976216
√√

13−3−635011026624

)
i+
(
154300709940

√
78(

√
13−3)

−269227309776
√

78+761698308956
√

6(
√

13−3)−129453209208
√

26(
√

13−3)+583684706364
√

39(
√

13−3)

+1490196729528
√

6−270624017040
√

26+411101580336
√

39−1353303589248
√

2(
√

13−3)

+1356420570076
√

3(
√

13−3)+371194537620
√

13(
√

13−3)−1457459351400
√

2−1424901505872
√

3

−327820027392
√

13−462358944060
√√

13−3−2700029672496
)

Θ2
1+
(

−80589673632
√

78(
√

13−3)

−1121899025424
√

78+743419518712
√

6(
√

13−3)+1000291281648
√

26(
√

13−3)

+347063984424
√

39(
√

13−3)+1808068270320
√

6−68981441880
√

26+571067720616
√

39

+3818491311336
√

2(
√

13−3)−1067410167304
√

3(
√

13−3)+1721153813424
√

13(
√

13−3)

+1165371165192
√

2−5157949405128
√

3−229994431992
√

13+2686412880528
√√

13−3−3521174897448
)

Θ1

−1822444574184
√

78(
√

13−3)+952582707096
√

78−4330096073368
√

6(
√

13−3)

Computing Equiangular Lines in Complex Space 99

−1347178222848
√

26(
√

13−3)−5512616298744
√

39(
√

13−3)−3348263555208
√

6−417961305528
√

26

−1596753185184
√

39−1944700416672
√

2(
√

13−3)−20247022085576
√

3(
√

13−3)

−3825810122136
√

13(
√

13−3)+8604302416008
√

2+8486483594784
√

3+4430219876784
√

13

+4880645143608
√√

13−3+23270763245808

v5=

((
44504276384

√
78(

√
13−1)+318237636924

√
78−151828132924

√
6(

√
13−1)

+34136920536
√

26(
√

13−1)−98935477176
√

39(
√

13−1)+242322009228
√

6+931345797708
√

26

−186392234436
√

39+166138799892
√

2(
√

13−1)+573401985936
√

3(
√

13−1)−254859333504
√

13(
√

13−1)

−58488656148
√

2+1175430629724
√

3−215870718492
√

13+1558758003816
√√

13−1+3336815059812
)

Θ2
1

+
(
135089286184

√
78(

√
13−1)+691888522860

√
78−118098675500

√
6(

√
13−1)+274264532040

√
26(

√
13−1)

−11847154560
√

39(
√

13−1)−1464891106068
√

6+2314315973448
√

26−175448592660
√

39

−531432423132
√

2(
√

13−1)+656996803320
√

3(
√

13−1)−427936224360
√

13(
√

13−1)−3688428786120
√

2

+5409811905420
√

3+69175002780
√

13+2166265940280
√√

13−1+10349226330300
)

Θ1

−509263660588
√

78(
√

13−1)−938070648468
√

78+3010980577748
√

6(
√

13−1)+623036788368
√

26(
√

13−1)

+1189535344944
√

39(
√

13−1)+7379540374284
√

6−3958070812236
√

26−1152333318408
√

39

−3616678251264
√

2(
√

13−1)−6297792128472
√

3(
√

13−1)+1185739493088
√

13(
√

13−1)

−9563947783884
√

2+5672324504808
√

3−1976154581232
√

13−7248951680568
√√

13−1−10695965318064

)
i

+
(
122671351452

√
78(

√
13−1)+142230668148

√
78−541399851096

√
6(

√
13−1)+175615983492

√
26(

√
13−1)

−261956535816
√

39(
√

13−1)+2240309341764
√

6+118086900084
√

26+336823402572
√

39

−691687683024
√

2(
√

13−1)+688885480608
√

3(
√

13−1)−224811029232
√

13(
√

13−1)+2371273089588
√

2

+1274473966428
√

3+212079746988
√

13+487579872312
√√

13−1−541755214884
)

Θ2
1

+
(
277870869900

√
78(

√
13−1)+13292409240

√
78−1412412683760

√
6(

√
13−1)+523921239060

√
26(

√
13−1)

−847778258520
√

39(
√

13−1)+2634079392360
√

6+896641545780
√

26+839890237068
√

39

−2444157602640
√

2(
√

13−1)+2696013976968
√

3(
√

13−1)−820722286728
√

13(
√

13−1)+4696456510980
√

2

+908276800860
√

3+1672043266260
√

13+2719834387920
√√

13−1+3497002028676
)

Θ1

−22644233664
√

78(
√

13−1)−660127107564
√

78+771939362064
√

6(
√

13−1)−1589590378956
√

26(
√

13−1)

+568133682072
√

39(
√

13−1)−10415072496348
√

6−525173105628
√

26−501494309424
√

39

+9100285213188
√

2(
√

13−1)−201954535536
√

3(
√

13−1)+2011648936104
√

13(
√

13−1)

−24037501737132
√

2−9983913007536
√

3+1393986824424
√

13−8182103383584
√√

13−1−5205649741032

v6=

((
−16454168751

√
312(4−

√
13)−47390453990

√
78(

√
13−1)−150615625836

√
78(

√
13−3)

−476309407899
√

24(4−
√

13)−178740295623
√

104(4−
√

13)+6550417786
√

156(4−
√

13)−200574075210
√

78

−2171251706
√

6(
√

13−1)−7529062602
√

26(
√

13−1)−57774655044
√

39(
√

13−1)

−214365468304
√

6(
√

13−3)−296443549050
√

26(
√

13−3)−292212076266
√

39(
√

13−3)

−1462364383779
√

8(4−
√

13)+32306974726
√

12(4−
√

13)−288116397432
√

52(4−
√

13)−920784383298
√

6

−65280647370
√

26−236802250056
√

39−18984505410
√

2(
√

13−1)+89743882176
√

3(
√

13−1)

−64219197876
√

13(
√

13−1)−1210153009962
√

2(
√

13−3)−854131510830
√

3(
√

13−3)

−564912731370
√

13(
√

13−3)−886418028756
√

4(4−
√

13)−3175132080354
√

2−2214035946096
√

3

−782921827236
√

13+331481255040
√√

13−1−2116117476798
√√

13−3−1175644168764
)

Θ2
1

+
(

−261285520014
√

312(4−
√

13)−217409051218
√

78(
√

13−1)−622316394570
√

78(
√

13−3)

−1400420673054
√

24(4−
√

13)+77047066524
√

104(4−
√

13)−633787226572
√

156(4−
√

13)

−611561015256
√

78+582751308854
√

6(
√

13−1)−11268257814
√

26(
√

13−1)−151941836640
√

39(
√

13−1)

−1715193142130
√

6(
√

13−3)−455563942290
√

26(
√

13−3)−926400471348
√

39(
√

13−3)

−1572951646968
√

8(4−
√

13)−1182760486024
√

12(4−
√

13)−491208218736
√

52(4−
√

13)

−2382877556280
√

6−525308225280
√

26−750058129428
√

39−127877818926
√

2(
√

13−1)

+264092706384
√

3(
√

13−1)−100408016484
√

13(
√

13−1)−1885983791250
√

2(
√

13−3)

−2558306038236
√

3(
√

13−3)−814865740884
√

13(
√

13−3)−152263837284
√

4(4−
√

13)−5651397155352
√

2

−2529045217452
√

3−2261705398908
√

13−1107438540
√√

13−1−2431312258596
√√

13−3

100 M. Grassl

−2394241466916
)

Θ1+76485755454
√

312(4−
√

13)+18112893910
√

78(
√

13−1)+833223741870
√

78(
√

13−3)

+4194444816042
√

24(4−
√

13)+2615948219322
√

104(4−
√

13)+612061589596
√

156(4−
√

13)

+1194861591888
√

78+1790482702138
√

6(
√

13−1)+522547672758
√

26(
√

13−1)

+856190279844
√

39(
√

13−1)+1475794800974
√

6(
√

13−3)+2058789844194
√

26(
√

13−3)

+2449219436712
√

39(
√

13−3)+12685094068842
√

8(4−
√

13)+1362249350176
√

12(4−
√

13)

+1458981200556
√

52(4−
√

13)+3249228240648
√

6−115720418712
√

26+127070102184
√

39

−1349248210830
√

2(
√

13−1)−2477933969940
√

3(
√

13−1)+9103835640
√

13(
√

13−1)

+6757060637730
√

2(
√

13−3)+6316192474800
√

3(
√

13−3)+4731647487060
√

13(
√

13−3)

+8516766878568
√

4(4−
√

13)+13033338017544
√

2+24092955961152
√

3+3147389886912
√

13

+1384757681112
√√

13−1+21043552558236
√√

13−3+3686540539032

)
i+
(

−131613425423
√

312(4−
√

13)

+88551276122
√

78(
√

13−1)−142142839110
√

78(
√

13−3)−375887075759
√

24(4−
√

13)

−453389075337
√

104(4−
√

13)−231627929636
√

156(4−
√

13)+21828322638
√

78−481486852054
√

6(
√

13−1)

+198169198230
√

26(
√

13−1)−126014805704
√

39(
√

13−1)−448454701006
√

6(
√

13−3)

−581300086716
√

26(
√

13−3)+18771974994
√

39(
√

13−3)−1728489498177
√

8(4−
√

13)

−752422831472
√

12(4−
√

13)−615432666246
√

52(4−
√

13)+279497636574
√

6+351661391322
√

26

+212102566188
√

39−1208292243366
√

2(
√

13−1)+209569880260
√

3(
√

13−1)−19112768400
√

13(
√

13−1)

−1996399994160
√

2(
√

13−3)−759696906722
√

3(
√

13−3)−505441691178
√

13(
√

13−3)

−2891717726586
√

4(4−
√

13)+411912780474
√

2−63843827580
√

3+3662516664
√

13

−701727865644
√√

13−1−3024753476550
√√

13−3+234414217440
)

Θ2
1+
(

−485953705408
√

312(4−
√

13)

+77314369138
√

78(
√

13−1)−536153615922
√

78(
√

13−3)−1762174555492
√

24(4−
√

13)

−865570530858
√

104(4−
√

13)−591990607756
√

156(4−
√

13)−76032122904
√

78−975655405790
√

6(
√

13−1)

+338796465690
√

26(
√

13−1)−553054838164
√

39(
√

13−1)−1142564272538
√

6(
√

13−3)

−866657902062
√

26(
√

13−3)−467801756460
√

39(
√

13−3)−3797772147546
√

8(4−
√

13)

−2110836625768
√

12(4−
√

13)−870804592512
√

52(4−
√

13)+872674965552
√

6+1088385539448
√

26

+831899830620
√

39−2039495559894
√

2(
√

13−1)+1137607262324
√

3(
√

13−1)−470657563224
√

13(
√

13−1)

−1327088115054
√

2(
√

13−3)−3498722425900
√

3(
√

13−3)−1058047600620
√

13(
√

13−3)

−4507866532572
√

4(4−
√

13)−719522191128
√

2−304693140492
√

3−160741716228
√

13

+808216646952
√√

13−1−4988505234180
√√

13−3+2487569153940
)

Θ1+656255268622
√

312(4−
√

13)

−351457959010
√

78(
√

13−1)+236345270010
√

78(
√

13−3)+726791099086
√

24(4−
√

13)

+3337508108166
√

104(4−
√

13)+925162539748
√

156(4−
√

13)−470321980896
√

78

+2029375456394
√

6(
√

13−1)−1699183330206
√

26(
√

13−1)+198562829152
√

39(
√

13−1)

+2426964564362
√

6(
√

13−3)+1152493002762
√

26(
√

13−3)−780968811684
√

39(
√

13−3)

+13567726519386
√

8(4−
√

13)+3503131757008
√

12(4−
√

13)+986748236148
√

52(4−
√

13)

−1333270036176
√

6−3105402077496
√

26−2125863620448
√

39+9982957572510
√

2(
√

13−1)

+36938218720
√

3(
√

13−1)−210082066860
√

13(
√

13−1)+2482683986250
√

2(
√

13−3)

+796530472660
√

3(
√

13−3)+3521848188000
√

13(
√

13−3)+6897583443504
√

4(4−
√

13)+9315916177152
√

2

+3878857592376
√

3−862614219384
√

13+3150102399756
√√

13−1+23829222568008
√√

13−3

+7780537270896

v7=

((
−253154309232

√
78+394679942592

√
6+505183239936

√
26−262142036160

√
39−2716832029392

√
2

+389879315904
√

3−1359667929888
√

13+2591889985152
)

Θ2
1+
(

−1175219208528
√

78−952012993776
√

6

+1892714775696
√

26−748097128992
√

39−6672327878736
√

2+863948252544
√

3−3174373318464
√

13

+9353532198816
)

Θ1+4151926351296
√

78−13206008607168
√

6+465755406912
√

26+1383690571776
√

39

+16405205451648
√

2−2325104748096
√

3+9972213917184
√

13−24636924990912

)
i+
(

−248511766032
√

78

−2779527628800
√

6−947400777696
√

26−666179550912
√

39−4682519685168
√

2−2688556007904
√

3

−1641561050688
√

13−11753751741888
)

Θ2
1+
(

−1666747572912
√

78−6184981185552
√

6

−2262257806128
√

26−2203108236384
√

39−9889057920144
√

2−7358001283776
√

3−4269311177664
√

13

−10630373608608
)

Θ1+643972212288
√

78+16604141052096
√

6+4233554874816
√

26+2557102080768
√

39

+23684529146304
√

2+13190200637952
√

3+6648778523712
√

13+74430301830144

Computing Equiangular Lines in Complex Space 101

v8=

((
16454168751

√
312(4−

√
13)−47390453990

√
78(

√
13−1)−150615625836

√
78(

√
13−3)

+476309407899
√

24(4−
√

13)+178740295623
√

104(4−
√

13)−6550417786
√

156(4−
√

13)+200574075210
√

78

−2171251706
√

6(
√

13−1)−7529062602
√

26(
√

13−1)−57774655044
√

39(
√

13−1)

−214365468304
√

6(
√

13−3)−296443549050
√

26(
√

13−3)−292212076266
√

39(
√

13−3)

+1462364383779
√

8(4−
√

13)−32306974726
√

12(4−
√

13)+288116397432
√

52(4−
√

13)+920784383298
√

6

+65280647370
√

26+236802250056
√

39−18984505410
√

2(
√

13−1)+89743882176
√

3(
√

13−1)

−64219197876
√

13(
√

13−1)−1210153009962
√

2(
√

13−3)−854131510830
√

3(
√

13−3)

−564912731370
√

13(
√

13−3)+886418028756
√

4(4−
√

13)+3175132080354
√

2+2214035946096
√

3

+782921827236
√

13+331481255040
√√

13−1−2116117476798
√√

13−3+1175644168764
)

Θ2
1

+
(
261285520014

√
312(4−

√
13)−217409051218

√
78(

√
13−1)−622316394570

√
78(

√
13−3)

+1400420673054
√

24(4−
√

13)−77047066524
√

104(4−
√

13)+633787226572
√

156(4−
√

13)

+611561015256
√

78+582751308854
√

6(
√

13−1)−11268257814
√

26(
√

13−1)−151941836640
√

39(
√

13−1)

−1715193142130
√

6(
√

13−3)−455563942290
√

26(
√

13−3)−926400471348
√

39(
√

13−3)

+1572951646968
√

8(4−
√

13)+1182760486024
√

12(4−
√

13)+491208218736
√

52(4−
√

13)

+2382877556280
√

6+525308225280
√

26+750058129428
√

39−127877818926
√

2(
√

13−1)

+264092706384
√

3(
√

13−1)−100408016484
√

13(
√

13−1)−1885983791250
√

2(
√

13−3)

−2558306038236
√

3(
√

13−3)−814865740884
√

13(
√

13−3)+152263837284
√

4(4−
√

13)+5651397155352
√

2

+2529045217452
√

3+2261705398908
√

13−1107438540
√√

13−1−2431312258596
√√

13−3

+2394241466916
)

Θ1−76485755454
√

312(4−
√

13)+18112893910
√

78(
√

13−1)+833223741870
√

78(
√

13−3)

−4194444816042
√

24(4−
√

13)−2615948219322
√

104(4−
√

13)−612061589596
√

156(4−
√

13)

−1194861591888
√

78+1790482702138
√

6(
√

13−1)+522547672758
√

26(
√

13−1)

+856190279844
√

39(
√

13−1)+1475794800974
√

6(
√

13−3)+2058789844194
√

26(
√

13−3)

+2449219436712
√

39(
√

13−3)−12685094068842
√

8(4−
√

13)−1362249350176
√

12(4−
√

13)

−1458981200556
√

52(4−
√

13)−3249228240648
√

6+115720418712
√

26−127070102184
√

39

−1349248210830
√

2(
√

13−1)−2477933969940
√

3(
√

13−1)+9103835640
√

13(
√

13−1)

+6757060637730
√

2(
√

13−3)+6316192474800
√

3(
√

13−3)+4731647487060
√

13(
√

13−3)

−8516766878568
√

4(4−
√

13)−13033338017544
√

2−24092955961152
√

3−3147389886912
√

13

+1384757681112
√√

13−1+21043552558236
√√

13−3−3686540539032

)
i

+
(
131613425423

√
312(4−

√
13)+88551276122

√
78(

√
13−1)−142142839110

√
78(

√
13−3)

+375887075759
√

24(4−
√

13)+453389075337
√

104(4−
√

13)+231627929636
√

156(4−
√

13)

−21828322638
√

78−481486852054
√

6(
√

13−1)+198169198230
√

26(
√

13−1)−126014805704
√

39(
√

13−1)

−448454701006
√

6(
√

13−3)−581300086716
√

26(
√

13−3)+18771974994
√

39(
√

13−3)

+1728489498177
√

8(4−
√

13)+752422831472
√

12(4−
√

13)+615432666246
√

52(4−
√

13)−279497636574
√

6

−351661391322
√

26−212102566188
√

39−1208292243366
√

2(
√

13−1)+209569880260
√

3(
√

13−1)

−19112768400
√

13(
√

13−1)−1996399994160
√

2(
√

13−3)−759696906722
√

3(
√

13−3)

−505441691178
√

13(
√

13−3)+2891717726586
√

4(4−
√

13)−411912780474
√

2+63843827580
√

3

−3662516664
√

13−701727865644
√√

13−1−3024753476550
√√

13−3−234414217440
)

Θ2
1

+
(
485953705408

√
312(4−

√
13)+77314369138

√
78(

√
13−1)−536153615922

√
78(

√
13−3)

+1762174555492
√

24(4−
√

13)+865570530858
√

104(4−
√

13)+591990607756
√

156(4−
√

13)

+76032122904
√

78−975655405790
√

6(
√

13−1)+338796465690
√

26(
√

13−1)−553054838164
√

39(
√

13−1)

−1142564272538
√

6(
√

13−3)−866657902062
√

26(
√

13−3)−467801756460
√

39(
√

13−3)

+3797772147546
√

8(4−
√

13)+2110836625768
√

12(4−
√

13)+870804592512
√

52(4−
√

13)−872674965552
√

6

−1088385539448
√

26−831899830620
√

39−2039495559894
√

2(
√

13−1)+1137607262324
√

3(
√

13−1)

−470657563224
√

13(
√

13−1)−1327088115054
√

2(
√

13−3)−3498722425900
√

3(
√

13−3)

−1058047600620
√

13(
√

13−3)+4507866532572
√

4(4−
√

13)+719522191128
√

2+304693140492
√

3

+160741716228
√

13+808216646952
√√

13−1−4988505234180
√√

13−3−2487569153940
)

Θ1

−656255268622
√

312(4−
√

13)−351457959010
√

78(
√

13−1)+236345270010
√

78(
√

13−3)

−726791099086
√

24(4−
√

13)−3337508108166
√

104(4−
√

13)−925162539748
√

156(4−
√

13)

+470321980896
√

78+2029375456394
√

6(
√

13−1)−1699183330206
√

26(
√

13−1)

102 M. Grassl

+198562829152
√

39(
√

13−1)+2426964564362
√

6(
√

13−3)+1152493002762
√

26(
√

13−3)

−780968811684
√

39(
√

13−3)−13567726519386
√

8(4−
√

13)−3503131757008
√

12(4−
√

13)

−986748236148
√

52(4−
√

13)+1333270036176
√

6+3105402077496
√

26+2125863620448
√

39

+9982957572510
√

2(
√

13−1)+36938218720
√

3(
√

13−1)−210082066860
√

13(
√

13−1)

+2482683986250
√

2(
√

13−3)+796530472660
√

3(
√

13−3)+3521848188000
√

13(
√

13−3)

−6897583443504
√

4(4−
√

13)−9315916177152
√

2−3878857592376
√

3+862614219384
√

13

+3150102399756
√√

13−1+23829222568008
√√

13−3−7780537270896

v9=

((
−44504276384

√
78(

√
13−1)+318237636924

√
78+151828132924

√
6(

√
13−1)

−34136920536
√

26(
√

13−1)+98935477176
√

39(
√

13−1)+242322009228
√

6+931345797708
√

26

−186392234436
√

39−166138799892
√

2(
√

13−1)−573401985936
√

3(
√

13−1)+254859333504
√

13(
√

13−1)

−58488656148
√

2+1175430629724
√

3−215870718492
√

13−1558758003816
√√

13−1+3336815059812
)

Θ2
1

+
(

−135089286184
√

78(
√

13−1)+691888522860
√

78+118098675500
√

6(
√

13−1)

−274264532040
√

26(
√

13−1)+11847154560
√

39(
√

13−1)−1464891106068
√

6+2314315973448
√

26

−175448592660
√

39+531432423132
√

2(
√

13−1)−656996803320
√

3(
√

13−1)+427936224360
√

13(
√

13−1)

−3688428786120
√

2+5409811905420
√

3+69175002780
√

13−2166265940280
√√

13−1+10349226330300
)

Θ1

+509263660588
√

78(
√

13−1)−938070648468
√

78−3010980577748
√

6(
√

13−1)−623036788368
√

26(
√

13−1)

−1189535344944
√

39(
√

13−1)+7379540374284
√

6−3958070812236
√

26−1152333318408
√

39

+3616678251264
√

2(
√

13−1)+6297792128472
√

3(
√

13−1)−1185739493088
√

13(
√

13−1)

−9563947783884
√

2+5672324504808
√

3−1976154581232
√

13+7248951680568
√√

13−1−10695965318064

)
i

+
(

−122671351452
√

78(
√

13−1)+142230668148
√

78+541399851096
√

6(
√

13−1)

−175615983492
√

26(
√

13−1)+261956535816
√

39(
√

13−1)+2240309341764
√

6+118086900084
√

26

+336823402572
√

39+691687683024
√

2(
√

13−1)−688885480608
√

3(
√

13−1)+224811029232
√

13(
√

13−1)

+2371273089588
√

2+1274473966428
√

3+212079746988
√

13−487579872312
√√

13−1−541755214884
)

Θ2
1

+
(

−277870869900
√

78(
√

13−1)+13292409240
√

78+1412412683760
√

6(
√

13−1)

−523921239060
√

26(
√

13−1)+847778258520
√

39(
√

13−1)+2634079392360
√

6+896641545780
√

26

+839890237068
√

39+2444157602640
√

2(
√

13−1)−2696013976968
√

3(
√

13−1)+820722286728
√

13(
√

13−1)

+4696456510980
√

2+908276800860
√

3+1672043266260
√

13−2719834387920
√√

13−1+3497002028676
)

Θ1

+22644233664
√

78(
√

13−1)−660127107564
√

78−771939362064
√

6(
√

13−1)+1589590378956
√

26(
√

13−1)

−568133682072
√

39(
√

13−1)−10415072496348
√

6−525173105628
√

26−501494309424
√

39

−9100285213188
√

2(
√

13−1)+201954535536
√

3(
√

13−1)−2011648936104
√

13(
√

13−1)

−24037501737132
√

2−9983913007536
√

3+1393986824424
√

13+8182103383584
√√

13−1−5205649741032

v10=

((
−731915712552

√
78(

√
13−3)−125519540184

√
78−2210765462464

√
6(

√
13−3)

−722872066380
√

26(
√

13−3)−797653767444
√

39(
√

13−3)−458077199424
√

6−323269220712
√

26

+366532023072
√

39−2555517112980
√

2(
√

13−3)−3878884987380
√

3(
√

13−3)−508596806388
√

13(
√

13−3)

+108644753568
√

2+197578285008
√

3+100156084800
√

13−4395208196964
√√

13−3−911613168960
)

Θ2
1

+
(

−1488974296632
√

78(
√

13−3)−252967696776
√

78−3042281257184
√

6(
√

13−3)

−2064024790056
√

26(
√

13−3)−1984448071968
√

39(
√

13−3)+1522918860216
√

6−466687258656
√

26

+1039084227960
√

39−5313676608864
√

2(
√

13−3)−7546811272416
√

3(
√

13−3)

−2218271010264
√

13(
√

13−3)+1373559746208
√

2−3006982158648
√

3−724293724632
√

13

−12927479536296
√√

13−3−2976810231720
)

Θ1+1985716744632
√

78(
√

13−3)+127930187208
√

78

+3958478787224
√

6(
√

13−3)+2767825654224
√

26(
√

13−3)+5971067624712
√

39(
√

13−3)

−2083313767704
√

6+462949809576
√

26−1710278238192
√

39+14037954330816
√

2(
√

13−3)

+30145415042808
√

3(
√

13−3)+2388741052008
√

13(
√

13−3)−7723861751736
√

2−15805866028368
√

3

+127993749792
√

13+23433143976216
√√

13−3+635011026624

)
i+
(
154300709940

√
78(

√
13−3)

+269227309776
√

78+761698308956
√

6(
√

13−3)−129453209208
√

26(
√

13−3)+583684706364
√

39(
√

13−3)

−1490196729528
√

6+270624017040
√

26−411101580336
√

39−1353303589248
√

2(
√

13−3)

Computing Equiangular Lines in Complex Space 103

+1356420570076
√

3(
√

13−3)+371194537620
√

13(
√

13−3)+1457459351400
√

2+1424901505872
√

3

+327820027392
√

13−462358944060
√√

13−3+2700029672496
)

Θ2
1+(−80589673632

√
78(

√
13−3)

+1121899025424
√

78+743419518712
√

6(
√

13−3)+1000291281648
√

26(
√

13−3)

+347063984424
√

39(
√

13−3)−1808068270320
√

6+68981441880
√

26−571067720616
√

39

+3818491311336
√

2(
√

13−3)−1067410167304
√

3(
√

13−3)+1721153813424
√

13(
√

13−3)

−1165371165192
√

2+5157949405128
√

3+229994431992
√

13+2686412880528
√√

13−3+3521174897448
)

Θ1

−1822444574184
√

78(
√

13−3)−952582707096
√

78−4330096073368
√

6(
√

13−3)

−1347178222848
√

26(
√

13−3)−5512616298744
√

39(
√

13−3)+3348263555208
√

6+417961305528
√

26

+1596753185184
√

39−1944700416672
√

2(
√

13−3)−20247022085576
√

3(
√

13−3)

−3825810122136
√

13(
√

13−3)−8604302416008
√

2−8486483594784
√

3−4430219876784
√

13

+4880645143608
√√

13−3−23270763245808

v11=

((
−139285184364

√
78(

√
13−1)+131930836488

√
78+147485629512

√
6(

√
13−1)

−49195045740
√

26(
√

13−1)−16613832912
√

39(
√

13−1)+976183494312
√

6−295192621944
√

26

−68424768396
√

39−204107810712
√

2(
√

13−1)−393914221584
√

3(
√

13−1)+126420937752
√

13(
√

13−1)

−981357553800
√

2−316722878940
√

3+128818185732
√

13−895795493736
√√

13−1−1127988040140
)

Θ2
1

+
(

−569907388620
√

78(
√

13−1)+309663347508
√

78+1283601293208
√

6(
√

13−1)

−296801047668
√

26(
√

13−1)−292036518720
√

39(
√

13−1)−926166269964
√

6−877793935176
√

26

−894131968788
√

39+275676785280
√

2(
√

13−1)−128811390552
√

3(
√

13−1)+227120191392
√

13(
√

13−1)

+2252150700696
√

2+429274655004
√

3+1747850662476
√

13−2168480817360
√√

13−1−2823852974436
)

Θ1

+545489448408
√

78(
√

13−1)−1120807155228
√

78+569984826528
√

6(
√

13−1)+422058557148
√

26(
√

13−1)

+522845214744
√

39(
√

13−1)−1953716627148
√

6+1601894333772
√

26+810795451416
√

39

+918181829604
√

2(
√

13−1)+1341924188592
√

3(
√

13−1)−1167531821808
√

13(
√

13−1)

+17969533018476
√

2+7563645288888
√

3−806813224272
√

13+10018467042792
√√

13−1+9332185881408

)
i

+
(
54431200792

√
78(

√
13−1)−260181139440

√
78−421573853012

√
6(

√
13−1)+220722412968

√
26(

√
13−1)

+9926924408
√

39(
√

13−1)+1330427190144
√

6+137956773480
√

26+562840700988
√

39

−1724896803708
√

2(
√

13−1)−269745720088
√

3(
√

13−1)+186585492432
√

13(
√

13−1)−1529086474968
√

2

−1611741636804
√

3−432827297340
√

13−1891035603600
√√

13−1+2072219149572
)

Θ2
1

+
(

−123242131624
√

78(
√

13−1)−629423531592
√

78−538898127820
√

6(
√

13−1)

+153671692320
√

26(
√

13−1)−258331417808
√

39(
√

13−1)+2483733732792
√

6+510466739628
√

26

+1480412324364
√

39−1634833517148
√

2(
√

13−1)−420799452320
√

3(
√

13−1)−120592839720
√

13(
√

13−1)

−288249093444
√

2−3477795150804
√

3−1441005667356
√

13−1103401094016
√√

13−1+1046895667428
)

Θ1

−680271684356
√

78(
√

13−1)+1535540157276
√

78+3286811550724
√

6(
√

13−1)

−1808776281456
√

26(
√

13−1)−171008023768
√

39(
√

13−1)+952537513356
√

6−2410441570884
√

26

−3236183383632
√

39+10865629931832
√

2(
√

13−1)+275830972976
√

3(
√

13−1)

−2431813069824
√

13(
√

13−1)+28226661439548
√

2+15801032567424
√

3+4492371086184
√

13

+14482308183096
√√

13−1−3903632907096

v12=

((
−16454168751

√
312(4−

√
13)+47390453990

√
78(

√
13−1)−150615625836

√
78(

√
13−3)

−476309407899
√

24(4−
√

13)−178740295623
√

104(4−
√

13)+6550417786
√

156(4−
√

13)+200574075210
√

78

+2171251706
√

6(
√

13−1)+7529062602
√

26(
√

13−1)+57774655044
√

39(
√

13−1)

−214365468304
√

6(
√

13−3)−296443549050
√

26(
√

13−3)−292212076266
√

39(
√

13−3)

−1462364383779
√

8(4−
√

13)+32306974726
√

12(4−
√

13)−288116397432
√

52(4−
√

13)+920784383298
√

6

+65280647370
√

26+236802250056
√

39+18984505410
√

2(
√

13−1)−89743882176
√

3(
√

13−1)

+64219197876
√

13(
√

13−1)−1210153009962
√

2(
√

13−3)−854131510830
√

3(
√

13−3)

−564912731370
√

13(
√

13−3)−886418028756
√

4(4−
√

13)+3175132080354
√

2+2214035946096
√

3

+782921827236
√

13−331481255040
√√

13−1−2116117476798
√√

13−3+1175644168764
)

Θ2
1

+
(

−261285520014
√

312(4−
√

13)+217409051218
√

78(
√

13−1)−622316394570
√

78(
√

13−3)

104 M. Grassl

−1400420673054
√

24(4−
√

13)+77047066524
√

104(4−
√

13)−633787226572
√

156(4−
√

13)

+611561015256
√

78−582751308854
√

6(
√

13−1)+11268257814
√

26(
√

13−1)+151941836640
√

39(
√

13−1)

−1715193142130
√

6(
√

13−3)−455563942290
√

26(
√

13−3)−926400471348
√

39(
√

13−3)

−1572951646968
√

8(4−
√

13)−1182760486024
√

12(4−
√

13)−491208218736
√

52(4−
√

13)

+2382877556280
√

6+525308225280
√

26+750058129428
√

39+127877818926
√

2(
√

13−1)

−264092706384
√

3(
√

13−1)+100408016484
√

13(
√

13−1)−1885983791250
√

2(
√

13−3)

−2558306038236
√

3(
√

13−3)−814865740884
√

13(
√

13−3)−152263837284
√

4(4−
√

13)+5651397155352
√

2

+2529045217452
√

3+2261705398908
√

13+1107438540
√√

13−1−2431312258596
√√

13−3

+2394241466916
)

Θ1+76485755454
√

312(4−
√

13)−18112893910
√

78(
√

13−1)+833223741870
√

78(
√

13−3)

+4194444816042
√

24(4−
√

13)+2615948219322
√

104(4−
√

13)+612061589596
√

156(4−
√

13)

−1194861591888
√

78−1790482702138
√

6(
√

13−1)−522547672758
√

26(
√

13−1)

−856190279844
√

39(
√

13−1)+1475794800974
√

6(
√

13−3)+2058789844194
√

26(
√

13−3)

+2449219436712
√

39(
√

13−3)+12685094068842
√

8(4−
√

13)+1362249350176
√

12(4−
√

13)

+1458981200556
√

52(4−
√

13)−3249228240648
√

6+115720418712
√

26−127070102184
√

39

+1349248210830
√

2(
√

13−1)+2477933969940
√

3(
√

13−1)−9103835640
√

13(
√

13−1)

+6757060637730
√

2(
√

13−3)+6316192474800
√

3(
√

13−3)+4731647487060
√

13(
√

13−3)

+8516766878568
√

4(4−
√

13)−13033338017544
√

2−24092955961152
√

3−3147389886912
√

13

−1384757681112
√√

13−1+21043552558236
√√

13−3−3686540539032

)
i+
(

−131613425423
√

312(4−
√

13)

−88551276122
√

78(
√

13−1)−142142839110
√

78(
√

13−3)−375887075759
√

24(4−
√

13)

−453389075337
√

104(4−
√

13)−231627929636
√

156(4−
√

13)−21828322638
√

78+481486852054
√

6(
√

13−1)

−198169198230
√

26(
√

13−1)+126014805704
√

39(
√

13−1)−448454701006
√

6(
√

13−3)

−581300086716
√

26(
√

13−3)+18771974994
√

39(
√

13−3)−1728489498177
√

8(4−
√

13)

−752422831472
√

12(4−
√

13)−615432666246
√

52(4−
√

13)−279497636574
√

6−351661391322
√

26

−212102566188
√

39+1208292243366
√

2(
√

13−1)−209569880260
√

3(
√

13−1)+19112768400
√

13(
√

13−1)

−1996399994160
√

2(
√

13−3)−759696906722
√

3(
√

13−3)−505441691178
√

13(
√

13−3)

−2891717726586
√

4(4−
√

13)−411912780474
√

2+63843827580
√

3−3662516664
√

13

+701727865644
√√

13−1−3024753476550
√√

13−3−234414217440
)

Θ2
1+
(

−485953705408
√

312(4−
√

13)

−77314369138
√

78(
√

13−1)−536153615922
√

78(
√

13−3)−1762174555492
√

24(4−
√

13)

−865570530858
√

104(4−
√

13)−591990607756
√

156(4−
√

13)+76032122904
√

78+975655405790
√

6(
√

13−1)

−338796465690
√

26(
√

13−1)+553054838164
√

39(
√

13−1)−1142564272538
√

6(
√

13−3)

−866657902062
√

26(
√

13−3)−467801756460
√

39(
√

13−3)−3797772147546
√

8(4−
√

13)

−2110836625768
√

12(4−
√

13)−870804592512
√

52(4−
√

13)−872674965552
√

6−1088385539448
√

26

−831899830620
√

39+2039495559894
√

2(
√

13−1)−1137607262324
√

3(
√

13−1)+470657563224
√

13(
√

13−1)

−1327088115054
√

2(
√

13−3)−3498722425900
√

3(
√

13−3)−1058047600620
√

13(
√

13−3)

−4507866532572
√

4(4−
√

13)+719522191128
√

2+304693140492
√

3+160741716228
√

13

−808216646952
√√

13−1−4988505234180
√√

13−3−2487569153940
)

Θ1+656255268622
√

312(4−
√

13)

+351457959010
√

78(
√

13−1)+236345270010
√

78(
√

13−3)+726791099086
√

24(4−
√

13)

+3337508108166
√

104(4−
√

13)+925162539748
√

156(4−
√

13)+470321980896
√

78

−2029375456394
√

6(
√

13−1)+1699183330206
√

26(
√

13−1)−198562829152
√

39(
√

13−1)

+2426964564362
√

6(
√

13−3)+1152493002762
√

26(
√

13−3)−780968811684
√

39(
√

13−3)

+13567726519386
√

8(4−
√

13)+3503131757008
√

12(4−
√

13)+986748236148
√

52(4−
√

13)

+1333270036176
√

6+3105402077496
√

26+2125863620448
√

39−9982957572510
√

2(
√

13−1)

−36938218720
√

3(
√

13−1)+210082066860
√

13(
√

13−1)+2482683986250
√

2(
√

13−3)

+796530472660
√

3(
√

13−3)+3521848188000
√

13(
√

13−3)+6897583443504
√

4(4−
√

13)−9315916177152
√

2

−3878857592376
√

3+862614219384
√

13−3150102399756
√√

13−1+23829222568008
√√

13−3

−7780537270896

Complexity of Comparing Monomials and Two
Improvements of the Buchberger-Möller

Algorithm

Samuel Lundqvist

Department of Mathematics
Stockholm University
SE-106 91 Stockholm

Sweden

Abstract. We give a new algorithm for merging sorted lists of mono-
mials. Together with a projection technique we obtain a new complexity
bound for the Buchberger-Möller algorithm.

1 Introduction

Vanishing ideals of points are of interest in many fields of mathematics — they
are used in coding theory, in interpolation problems and even in statistics. Re-
cently, the vanishing ideal of a set of affine points has been studied in molecular
biology [9].

The Buchberger-Möller algorithm [3], was proposed as a tool to make com-
putations over vanishing ideals of points. When doing complexity studies of
this algorithm, one has to deal with arithmetic operations over the ground field
and monomial manipulations. The number of arithmetic operations is reported
[4,10] to be proportional to nm3, where n denotes the number of variables and
m the number of points. The number of integer comparisons needed for the
monomial manipulations is reported [4,10] to be proportional to n2m2. In the
biological applications, the coefficients of the points takes values in a finite field
ZZp and one usually has m n. Accordingly, one has begun searching for al-
gorithms which are optimized for these situations. In [6], an algorithm which
uses O(nm2 +m6) operations (arithmetic and integer operations are treated the
same) is given, while in [7], the same authors sharpened this bound so that it
reads O(nm2 + pm4 + pm3 log(pm)) operations, where again, arithmetic and
integer operations are treated the same.

In this paper, we first make a thorough study of the complexity of compar-
ing monomials. We restrict our analysis to the admissible monomial orders on
n indeterminates given by invertible matrices with ZZ-coefficients. These orders
associate to each monomial an n-vector of integers with the property that com-
paring two monomials is the same as comparing the n-vectors lexicographically.
Although this is a restriction on the set of admissible monomial orders, we re-
mark that earlier complexity studies [4,7,10] have been performed only on a
much smaller set of of admissible orders, e.g. lex, deglex and degrevlex.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 105–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

106 S. Lundqvist

To give bounds for the monomial manipulations, we study algorithms for com-
paring lexicographically sorted n-vectors and give a fast algorithm for merging
lexicographically sorted lists of such vectors. Summation of ordered polynomials
is one example of a situation where merge algorithms are used and thus, our
merge algorithm could speed up the computation of S-polynomials during the
computation of a Grbner basis with respect to an ideal given by generators.

We then focus on the Buchberger-Möller algorithm. We notice that the upper
bound for the number of arithmetic operations during the algorithm as given in
[4] can be sharpened to read

O(nm2 + min(m, n)m3).

After introducing a projection technique we show that the upper bound for the
time complexity of the monomial manipulation part can be lowered to

O(min(m, n)m2 log(m))

using one of the monomial orders lex, deglex or degrevlex. Thus, our method has
better complexity than both the standard Buchberger-Möller algorithm and the
methods optimized for the situations where m n. (Recall that the complexity
of the original algorithm was O(n2m2) and measured in integer comparisons.)
Our method is also more general than the methods in [6,7] since we do not
assume that k is a finite field. From the two bounds above, it follows that the
bottleneck of the Buchberger-Möller algorithm is the arithmetic operations.

Finally, we use our methods to give new complexity results for the FGLM-
algorithm [4] and for the algorithms concerning ideals defined by functionals
given in [10].

Throughout the rest of the paper, we let S = k[x1, . . . , xn] denote the poly-
nomial ring in n variables over a field k. The notion xα, where α = (α1, . . . , αn),
will be used as short for xα1

1 · · ·xαn
n .

2 Monomial Manipulations

The main result in this section is that it is possible to merge two lexicographically
sorted lists a and b of n-tuples in some set Σ with s and t elements respectively
using at most min(s, t) + n comparisons in Σ plus max(s, t) comparisons in the
set {1, . . . , n}. This is better than the expected max(s, t)n Σ-comparisons. We
show how one can apply this result to merge sorted lists of monomials.

2.1 Complexity Model

In computer algebra, it is often implicitly assumed that address and index arith-
metics can be performed in constant time. This means that reading a byte from
any position in the memory is done in constant time, and reading k bytes is
an O(k)-operation. Such a model has advantages over a Turing machine, since

Complexity of Comparing Monomials and Two Improvements 107

it is easier to work with and even more realistic in the cases when the mem-
ory on a modern computer is enough to handle the input data. We will use
this model. Let a and b be integers. With this model, summation of a and b is
O(log(max(|a|, |b|))) and comparison of a and b is O(log(min(|a|, |b|)). We will
assume that multiplication of a and b is O(log(|a|) log(|b|)), although there are
better bounds [5].

Inspired by [10], we will split the complexity studies in two parts. We will give
arithmetic complexity for the arithmetic operations and time complexity for the
monomial manipulations. We remark that the time complexity of performing
f arithmetic operations always is at least O(f). We do not deal with growth
of coefficients in the arithmetic operations, but refer the reader to [4]. In [1],
techniques are discussed when k = Q using the Chinese remainder theorem.

2.2 Monomial Orders

An admissible monomial order ≺ on x1, . . . , xn is a total order on the monomi-
als which respects multiplication and has the unit 1 as the minimal element. A
complete classification of admissible monomial orderings was first given in [11].
We will perform complexity analyses for a subclass of these orders, namely those
defined by n × n-matrices of rational numbers which we define below. This is
a proper restriction, since given an admissible monomial order and a natural
number, there is an n×n-matrix of rational numbers that agrees with the given
monomial order on all monomials whose degrees are bounded by the given num-
ber [8]. In the rest of the paper we will assume that all monomial orders are
admissible.

Let A = (aij) be an element in GLn(Q) with the property that the first
nonzero entry in each column is positive. Then we can induce an order ≺A on
the monomials in S by

xα ≺A xβ iff Aαt < Aβt,

where Aαt < Aβt is the lexicographic order on ZZn, that is, (v1, . . . , vn) <
(w1, . . . , wn) if v1 = w1, . . . , vi−1 = wi−1 and vi < wi for some i. Notice that
multiplying a row of A by a positive integer does not change the order induced
by A, hence we may assume that A is an integer matrix.

Given A and a monomial xα, we call the vector Aαt the associated order
vector to xα and we denote it by ovA(xα). The simple observation

ovA(xix
α) = A(α1, . . . , αi−1, αi + 1, αi+1, . . . , αn)t = ovA(xα) + (a1i, . . . , ani),

gives us a handy formula for computing the order vector recursively.
An important subclass of the orders defined above consists of (1) the lexico-

graphical order, (2) the degree lexicographical order and (3) the degree reverse
lexicographic order. These orders, called standard in the rest of the paper, are
the common most used ones in computer algebra and computer algebra systems
have them predefined.

108 S. Lundqvist

If x1 " · · · " xn for a standard order ≺, we have ovlex(xα) = α, ovdeglex(xα)
= (

∑
i αi, α1, . . . , αn−1) and ovdegrevlex = (

∑
i αi,−αn, . . . ,−α2). It is easily

seen how to compute ov(xix
α) given ov(xα) for these orders.

In general, if xi1 " · · · " xin and ≺ is standard, we will assume that the
sequence i1, . . . , in is given a priori and that xα means xα1

i1
· · ·xαn

in
. We do not

make this assumption when ≺ is given by a matrix. As indicated in the intro-
duction, we will see that the complexity analysis of the monomial comparisons
is dependent on whether the order is standard or not.

When ≺ is a monomial order on x1, . . . , xn it will be useful to restrict ≺ to
a subset of the variables. If Ess is such a subset, we write ≺Ess to denote the
restriction of ≺ to Ess.

2.3 Comparing Vectors of Integers

Since we assume that comparing two monomials is the same as lexicographically
comparing their associated order vectors, we will now focus on comparing vectors
of integers.

To be able to prove the next lemma, recall that the number of bits needed to
represent an integer a is

numbits(a) =
{

2 if a = 0

log2(|a|)�+ 2 otherwise ,

where one bit is used to represent sign.

Lemma 1. Let α = (α1, . . . , αn) be a vector of integers αi. Let m =
∑

i |αi|.
Then ∑

i

numbits(αi) ≤
{

3n if m ≤ 2n
n log2(m/n) + 2n otherwise

Proof. Suppose that α contains k non-zero entries. Without loss of generality,
we may assume that αi = 0 if i > k and αi �= 0 if i ≤ k. We get

∑
j

numbits(αj) =
k∑

j=1

numbits(αj) +
n∑

j=k+1

numbits(0)

=
k∑

j=1

log2(αj)�+ 2k + 2(n− k) ≤
k∑

j=1

log2(αj) + 2n.

Now
∑k

j=1 log2(αj) = log2(α1 · · ·αk) and since α1 · · ·αk ≤ m/k · · ·m/k︸ ︷︷ ︸
k times

, we

conclude that
∑

j numbits(αj) ≤ f(k) where f(k) = k log2(m/k) + 2n. We see
that f ′(k) = 0 for k = m/2 and that f(m/2) is a maximum. If m ≤ 2n,
then

∑
i(numbits(αi)) < f(m/2) = m/2 + 2n ≤ 3n. If 2n < m, then observe

that f(k) is a monotone increasing function on the interval [1, m/2] so that∑
i(numbits(αi)) < f(n) = n log2(m/n) + 2n.

Complexity of Comparing Monomials and Two Improvements 109

We can formulate Lemma 1 in a more compact way by saying that the number
of bits needed is proportional to n max(log(m/n), 1).

Lemma 2. Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be vectors of integers
such that

∑
i |vi| = m1 and

∑
i |wi| = m2. Let m = max(m1, m2). In time

O(n max(log(m/n), 1)) we can determine if v and w differ and if they do, we
can determine the index i where they differ.

Proof. We proceed as follows. Compare v1 and w1. If they differ, we stop and
return the index. Otherwise, continue until we reach an index i such that vi �= wi

or v = w. Let us now analyze the complexity of this procedure. To compare
the vectors v an w, we need to compare at most all entries, that is, we get
time complexity proportional to

∑
i(numbits(vi) + numbits(wi)). We rewrite

this sum as
∑

i numbits(vi)+
∑

i numbits(wi) and use Lemma 1 and the remark
thereafter to conclude that this sum is dominated by n(max(log(m1/n), 1) +
max(log(m2/n), 1)).

2.4 Comparing Monomials with Respect to a Standard Order

Lemma 3. Suppose that ≺ is a standard order. An upper bound for the time
needed to compute ov(xix

α) given ov(xα) is O(log(m)), where m is the degree
of xα.

Proof. We need to increment at most two entries (in case of a degree order).
The lemma follows since all entries are bounded by m.

Lemma 4. An upper bound for the time needed to compare two monomials
xα and xβ given ov≺(xα) and ov≺(xβ) with respect to a standard order is
O(n max(log(m/n), 1)), where m = max(

∑
i αi,

∑
i βi).

Proof. Immediately from Lemma 2 when ≺ is lex. When ≺ is one of the degree
orders, the first entry equals the degree and the sum of the rest of the entries is
bounded by m, thus we get the same complexity in this case as well.

Lemma 5. Let ≺ be a standard monomial order and let Ess = {xj1 , . . . , xjn
}

be a subset of the variables such that xj1 " · · · " xjn . To compute ≺Ess is O(1).

Proof. Immediate.

2.5 Comparing Monomials with Respect to a Matrix Order

Lemma 6. An upper bound for the time needed to compute ovA(xix
α) given

ovA(xα) is proportional to n log(cm), where c = max(|aij |) and m =
∑

i αi.

Proof. From the recursion formulas given in section 2.2, we see that ovA(xα·xi) =
ovA(xα)+(a1i, . . . , ani), that is, we need to do n summations of integers bounded
by cm.

110 S. Lundqvist

Lemma 7. An upper bound for the time needed to compare two monomials xα

and xβ with respect to a matrix order defined by A given ovA(xα) and ovA(xβ)
is proportional to n log(cm), where c = max(|aij |) and m =

∑
i αi.

Proof. We have n comparisons of integers bounded by cm.

Let ≺ be a monomial order given by a matrix and let Varord≺(n) be the cost of
determining i1, . . . , in such that xi1 " · · · " xin . When ≺ is a standard order we
assume that i1, . . . , in was given as input, so that Varord≺(n) is O(1). However,
we do not assume this for a general order given by a matrix. Instead we have

Lemma 8. For an order given by a matrix, we can compute Varord≺(n) in time
O(n2log(c) log(n)).

Proof. To compare xi ≺ xj is the same as comparing the i’th and the j’th
column of the matrix A defining ≺. An upper bound for the comparisons is thus
O(n log(nc/n) + n) = O(n log(c)). Since sorting is O(n log(n)) comparisons, the
upper bound becomes O(n2 log(c) log(n)).

Lemma 9. Let ≺ be a monomial order given by a matrix A and let Ess =
{xj1 , . . . , xjn

} be a subset of the variables such that xj1 " · · · " xjn
. To deter-

mine an n × n-matrix AEss such that ≺Ess is given by AEss can be done using
O(nn2) arithmetic operations over Q.

Proof. Clearly the n × n matrix A obtained by keeping the columns j1, . . . , jn

defines ≺Ess and it has rank n. Suppose that the i’th row of A can be written as
a linear combination of the rows whose indices are less then i. Let α and β be
two order vectors with respect to Ess. Then, if Aα and Aβ agree on the first i−1
rows, then they also agree on the i’th row. Hence the i′th row is superfluous.
Thus, to determine AEss is the same as rowreducing A, which has arithmetic
complexity O(nn2).

2.6 Merging Sorted Lists of Monomials

Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be two n-vectors of non-negative
integers. If v �= w, let ∆(v, w) be the first index where v and w differ. If v = w
let ∆(v, w) = n + 1.

Lemma 10. If u < v, u < w and ∆(u, w) < ∆(u, v), then u < v < w and
∆(v, w) = ∆(u, w).

Proof. Let k = ∆(u, w). Then u1 = w1, . . . , uk−1 = wk−1 and uk < wk. Since
k < ∆(u, v), we have u1 = v1, . . . , uk = vk. Hence v1 = w1, . . . , vk−1 = wk−1
and vk < wk and thus v < w and ∆(v, w) = k = ∆(u, w).

Lemma 11. If u < v, u < w then ∆(v, w) ≥ min(∆(u, v), ∆(u, w)).

Proof. If ∆(u, w) < ∆(u, v) or ∆(u, v) < ∆(u, w), then the lemma follows by
Lemma 10. Otherwise, ∆(u, v) = ∆(u, w) implies that v and w agree on the first
∆(u, v) positions.

Complexity of Comparing Monomials and Two Improvements 111

Lemma 12. Let a = (a1, . . . , at) be a list of n-tuples of elements in an ordered
set Σ. Suppose that a is sorted lexicographically in increasing order and that we
are given ∆(ai, ai+1) for i = 1, . . . , t − 1. Let b be any element in Σn. Using
O(t+n) comparisons of elements in Σ plus time proportional to t log(n), we can
find an index i, 0 ≤ i ≤ t, such that a1 ≤ · · · ≤ ai < b ≤ ai+1 ≤ · · · ≤ at and
∆(ai, b)when i ≥ 1 and ∆(b, ai+1) when i < t.

When Σ is the set of non-negative integers and
∑

i vi ≤ m for all v ∈ a and∑
i bi ≤ m, an upper bound for the time complexity is O(n max(log(m/n), 1) +

t log(max(n, m))).

Proof. The proof contains three parts. We (a) give an algorithm, (b) prove its
correctness and (c) show that the complexity of the algorithm agrees with what
was stated in the lemma.

The algorithm
At stage 0, compute k = ∆(a1, b). If a1 < b, continue with stage 1. If b ≤ a1 we
stop and return 0 and ∆(a1, b) = k.
At stage i, 1 ≤ i < t, we suppose that ai < b and that ∆(ai, b) is computed.
We consider four different cases.

If ai = ai+1
Clearly ∆(ai+1, b) = ∆(ai, b). Continue with stage i + 1.

Else, if ∆(ai, b) > ∆(ai, ai+1)
We have ai < b < ai+1 and ∆(ai+1, b) = ∆(ai, ai+1) by Lemma 10.
Thus, we stop and return i, ∆(ai, b) and ∆(ai+1, b).

Else, if ∆(ai, b) < ∆(ai, ai+1)
We have ai < ai+1 < b and ∆(ai+1, b) = ∆(ai, b), again by Lemma 10.
Continue with stage i + 1.

Else
We have ∆(ai, b) = ∆(ai, ai+1) = k. Compare bk and ai+1,k, bk+1 and
ai+1,k+1 and so on to find k′ = ∆(ai+1, b).
If k′ = n + 1

We have ai < b = ai+1, so we stop and return i, ∆(ai, b) and
∆(ai+1, b).

Else, if bk′ < ai+1,k′

We have ai < b < ai+1, so we stop and return i, ∆(ai, b) and
∆(ai+1, b).

Else
We have bk′ > ai+1,k′ , so ai < ai+1 < b. Continue with stage i + 1.

At stage t we have at < b. Thus, we stop and return t and ∆(at, b).

The correctness of the algorithm
By construction.

Complexity of the algorithm
There are two key indices that we update during the algorithm. The first (i)
refers to a position in the list a, the second (k) refers to a position in the vector

112 S. Lundqvist

b. Notice that after each comparison, either i or k is increasing. Since both i and
k are non-decreasing it follows that the number of comparisons of elements in Σ
is at most n + t.

The number of ∆-comparisons during the algorithm is one per stage, that is,
at most t. Every such comparison consists of comparing integers bounded by n.
We conclude that the time needed for the integer comparisons is proportional to
t log(n).

Let now Σ be the set of non-negative integers. Everytime we increase i,
we make a comparison of an integer bounded by m, this gives time propor-
tional to t log(m). However, when increasing k, we are in a situation where
aik = bk. Hence, the total time used for the increasings of k is proportional to
n max(log(m/n), 1) by Lemma 2. Only once during the algorithm we will com-
pare aik and bk to conclude that they differ, this cost is O(log(m)). It follows
that an upper bound for the algorithm is proportional to

t log(n) + t log(m) + n max(log(m/n), 1) + log(m)

= t log(max(m, n)) + n max(log(m/n), 1).

Theorem 1. Let a = (a1, . . . , at) and b = (b1, . . . , bs) be two lists of n-tuples of
elements in an ordered set Σ. Suppose that a and b are sorted lexicographically
with respect to the order < in Σ. Suppose that we are given ∆(ai, ai+1) for
i = 1, . . . , t − 1 and ∆(bi, bi+1) for i = 1, . . . , s − 1. We can merge a and b
into a new list c and compute the sequence ∆(c1, c2), ∆(c2, c3), . . . using O(sn +
t) comparisons plus time complexity O(t log(n)). When Σ is the non-negative
integers and

∑
i vi ≤ m for all v ∈ a∪ b, an upper bound for the time complexity

of the algorithm is O(min(s, t)n max(log(m/n), 1) + max(s, t) log(n + m)).

Proof. Suppose, without loss of generality, that s < t. Let i1 be the index re-
turned after calling the algorithm in Lemma 12 with a and b1. Without affecting
the complexity of the algorithm, it is clear that we can modify it to give a
list c = (a1, . . . , ai1 , b1). Suppose that i2 is the index returned after calling the
algorithm in Lemma 12 with ai1+1, . . . , at and b2. Again, it is clear that it is
possible to update the list c without affecting the complexity so that it reads
(a1, . . . , ai1 , b1, ai1+1, . . . , ai2 , b2). If we proceed in this way we obtain the se-
quence

a1 ≤ · · · ≤ ai1 < b1 ≤ ai1+1 ≤ · · · ≤ ai2 < b2 ≤ · · · < bs ≤ ais+1 ≤ · · · ≤ at.

Since the algorithm in Lemma 12 returns ∆(bj , aij+1) we only need to check
the case when aij = aij+1 in order to conclude that ∆(c1, c2), ∆(c2, c3), . . .
is computed as a side effect of the calls to the modified algorithm. But when
aij = aij+1 we have that bj and bj+1 are consecutive and hence ∆(bj , bj+1) is
already computed by assumption.

Although it does not affect the complexity, stage 0 of the algorithm given in
Lemma 12 can be modified. When calling with aij+1, . . . , at and bj+1 we can use
that ∆(bj , aij+1) already is computed. Indeed, by Lemma 11, ∆(bj+1, aij+1) ≥

Complexity of Comparing Monomials and Two Improvements 113

min(∆(bj , aij+1), ∆(bj , bj+1)), so we could call the algorithm in Lemma 12 with
the extra parameter min(∆(bj , aij+1), ∆(bj , bj+1)) to speed up the computation
of ∆(bj+1, aij+1) in stage 0.

Since we make s calls to the algorithm in Lemma 12 (or to be more precise,
to the modified algorithm as defined above), we make ((i1 + 1) + n) + ((i2 + 1−
(i1 +1)+n)+ · · ·+((is +1− (is−1+1))+n) = (is +1)+sn < t+sn comparisons
of elements in Σ. The time complexity for the integer comparison part is by
Lemma 12 proportional to (i1 + 1) log(n) + (i2 + 1 − (i1 + 1)) log(n) + · · · +
(is + 1− (is−1 + 1)) log(n) = (is + 1) log(n) < t log(n). If Σ is the non-negative
integers, then an upper bound becomes O(sn max(log(m/n), 1) + t log(n + m))
by Lemma 2.

We now give two applications of the new merge algorithm. The idea of the first
example is to make the algorithm clear to the reader, while the second example
shows the strength of the algorithm.

Example 1. Suppose that we want to merge the lists

a = (x1x
2
3x

2
4, x1x

3
3, x

2
1x4, x

2
1x2x5, x

2
1x2x

2
4x5, x

3
1)

and
b = (x1, x1x

2
3, x

2
1x2x4x5, x

2
1x2x

2
4x5)

of monomials, sorted in increasing order with respect to lex and x1 > x2 >
x3 > x4 > x5. Since ovlex(xα) = α, we will use the exponent vectors. Thus, in
accordance with the notation above, a1 = (1, 0, 2, 2, 0), a2 = (1, 0, 3, 0, 0), a3 =
(2, 0, 0, 1, 0), a4 = (2, 1, 0, 0, 1), a5 = (2, 1, 0, 2, 1), a6 = (3, 0, 0, 0, 0) and b1 =
(1, 0, 0, 0, 0), b2 = (1, 0, 2, 0, 0), b3 = (2, 1, 0, 1, 1), b4 = (2, 1, 0, 2, 1).

We begin by comparing b1 and a1. We see that ∆(b1, a1) = 3 and that b13 <
a13, hence b1 < a1. Since ∆(b1, b2) = 3, we compare b23 and a13. They are equal,
so we check the fourth index and conclude that b2 < a1. Now ∆(b2, b3) = 1, so we
conclude that a1 < b3 only by checking the first index. Since ∆(a1, a2) = 3 > 1,
we also have a2 < b3. But ∆(a2, a3) = 1, so we compare a3 and b3 from index
1 and conclude that a3 < b3 and ∆(a3, b3) = 2. We see that ∆(a3, a4) = 2, thus
we compare b32 and a42. They are equal, so are b33 and b43, but b34 > a44, hence
a4 < b3 and ∆(b3, a4) = 4. Since also ∆(a4, a5) = 4, we compare the fourth
index of b3 and a5 to conclude that b3 < a5. Finally, since ∆(b3, b4) = 4, we
check the fourth and fifth indices of b4 and a5 to conclude that b4 = a5. We have

b1 < b2 < a1 < a2 < a3 < a4 < b3 < b4 ≤ a5 < a6.

and the sequence of differences is

3, 4, 2, 1, 2, 4, 4, 6, 1.

Example 2. Let n = 2s. Let f = x1x3 + x2xs and let g = x1x2 + x2x3 + · · · +
xn−1xn. Let ≺ be degrevlex with respect to x1 " · · · " xn. We see that the
terms of f and g are written with respect to this order. Suppose that, during

114 S. Lundqvist

a Grbner basis computation, we want to compute the S-polynomial of f and
g, that is, we want a sorted expression of S(f, g) = x2f − x3g. This is the
same as merging x2

2xs and (−x2x
2
3,−x2

3x4,−x3x4x5,−x3x5x6, . . . ,−x3xn−1xn)
(together with an arithmetic operation in the case of equality). For simplicity,
we write these expressions as lists of order vectors and omit the coefficients. We
get

a = (3, 0, . . . , 0︸ ︷︷ ︸
s times

,−1, 0, . . . , 0,−2)

and

b = ((3, 0, . . . , 0,−2,−1), (3, 0, . . . , 0,−1,−2, 0), (3, 0, . . . , 0,−1,−1,−1, 0),

(3, 0, . . . , 0,−1,−1, 0,−1, 0), . . . , (3,−1,−1, 0, . . . , 0,−1, 0)).

We assume that we are given the sequence of differences for g a priori. Since
the sequence of differences is closed under multiplication with a monomial, we
obtain the sequence of differences for b. It reads (n− 1, n− 2, . . . , 2). Using the
algorithm in Lemma 12, we first compare a and b1. After s + 2 comparisons,
we see that a " b1. Since ∆(b1, b2) = n− 2 and ∆(a, b1) = s + 2, we get (after
comparing n − 2 and s + 2) that a " b2 and that ∆(a, b2) = s + 2. Continuing
this way we see that a ≺ b1, a ≺ b2, a ≺ b3, . . . , a ≺ bs−3, and ∆(a, bi) = s + 2
for i = 1, . . . , s− 3, using

s + 2 + 1 + · · ·+ 1︸ ︷︷ ︸
s−3 times

= 2s− 1

comparisons. We have ∆(bs−3, bs−2) = s + 2 and since also ∆(a, bs−3) = s + 2,
we compare bs−2,s+2 and as+2 to conclude that a " bs−2. In total, we have used
2s− 1 + 2 = 2s + 1 comparisons.

Proceeding in a naive way we would use (s+2) · (s−2) = s2−4 comparisons.
It should be remarked that one needs extra cost for the bookkeeping of ∆(a, bi),
for i = 1, . . . , s− 2, which is of the same magnitude as the comparisons, that is,
to be fair, we should compare 2s + 1 + s− 2 = 3s− 1 with s2 − 4.

3 The Buchberger-Möller -Algorithm Revised

We first fix some notation. If xα is a monomial, we define its support, which we
denote by supp(xα), to be the set of all xi such that αi > 0. If M is a set of
monomials, then we define the support of M to be the union of the supports
of the elements in M . Let I be an ideal in S and let B be any subset of S
such that [B] = {[b] : b ∈ B} is a vector space basis for S/I. Here [b] denotes
the equivalence class in S/I containing b. If s is an element in S, its residue
can be uniquely expressed as a linear combination of the elements in [B], say
[s] =

∑
ci[bi]. The S-element

∑
cibi is then called the normal form of s with

respect to B and we write Nf(s, B) =
∑

cibi. We abuse notation and say that
B (instead of [B]) is a basis for S/I.

Complexity of Comparing Monomials and Two Improvements 115

Let ≺ be an (admissible) monomial order. The initial ideal of I, denoted by
in(I), is the monomial ideal consisting of all leading monomials of I with respect
to ≺. One of the characterizations of a set G being a Grbner basis of an ideal I
with respect to a monomial order ≺ is that G ⊆ I and that the leading terms
of G generate in(I). An old theorem by Macaulay states that the residues of
the monomials outside in(I) form a k-basis for the quotient S/I. The set of
monomials outside in(I) is closed under taking submonomials.

If p is a point in kn and f is an element of S, we denote by f(p) the evaluation
of f at p. When P = {p1, . . . , pm} is a set of points, f(P) = (f(p1), . . . , f(pm)).
If F = {f1, . . . , fs} is a set of elements in S, then F (P) is defined to be the s×m
matrix whose i’th row is fi(P).

The vanishing ideal I(P) is the ideal consisting of all elements in S which
vanishes on all the points in P . If f1 and f2 are two elements in S and [f1] = [f2]
in S/I(P), then f1(p) = f2(p) for p ∈ P . That a set [B] of m elements is a
k-basis for S/I(P) is equivalent to dimk(B(P)) = m.

In the rest of the paper, we will refer to the Buchberger-Möller algorithm as
the “BM-algorithm”. The BM-algorithm takes as input a set of points in kn and
a monomial order. It returns a Grbner basis G of I and the set B of monomials
outside in(I). The BM-algorithm was first given in [3]. During the years it has
been reformulated and modified. In the paper [4], the ideas of the BM-algorithm
was used to switch between different Grbner bases of a zero-dimensional ideal.
In the unifying paper [10] it was shown that both the BM- and the FGLM-
algorithm can be seen as an algorithm that computes a Grbner basis from an
ideal defined by functionals. The complexity studies given in [10] apply to the
BM-algorithm and in fact, [10] is by tradition the paper which one refers to
when complexity issues of the BM-algorithm are discussed. However, most of
the complexity studies in [10] are done by referring to the paper [4].

We will first discuss the complexity studies of the BM-algorithm and postpone
the connection with ideals defined by functionals to section 3.3.

3.1 Two Formulations of the BM-Algorithm

We give below the formulation of the BM-algorithm as given in [1]. When the
algorithm terminates, G is the Grbner basis with respect to ≺ and B is the
complement of the initial ideal with respect to ≺.

C1. Start with empty lists G = B = R = [] a list L = [1], and a matrix
C = (cij) over k with m columns and initially zero number of rows.

C2. If L = [], return the pair [G, B] and stop. Otherwise, choose the monomial
t = min≺(L), the smallest according to the ordering ≺. Delete t from L.

C3. Compute the evaluation vector (t(p1), . . . , t(pm)) ∈ km, and reduce it
against the rows of C to obtain

(v1, . . . , vm) = (t(p1), . . . , t(pm))−
∑

i

ai(ci1, . . . , cim) ai ∈ k.

116 S. Lundqvist

C4. If (v1, . . . , vm) = (0, . . . , 0), then append the polynomial t−
∑

i airi to the
list G, where ri is the i’th element of R. Continue with step C2. l

C5. If (v1, . . . , vm) �= (0, . . . , 0), then add (v1, . . . , vm) as a new row to C, and
t−
∑

i airi as a new element to R. Append the power product t to B, and
add to L those elements of {x1t, . . . , xnt} which are neither multiples of an
element of L nor of in(G). Continue with step C2.

The authors in [1] claims that this is the same as the algorithm restricted to
the BM-situation which appeared in [10], but this is not exactly the case. To
get the algorithm given in [10] restricted to the BM-situation using the five-step
description, we need to reformulate steps 2 and 5.

C2’. If L = [], return the pair [G, B] and stop. Otherwise, choose the power
product t = min≺(L), the smallest according to the ordering ≺. Delete t
from L. If t is a multiple of an element in in(G), then repeat this step.
Else, continue with step C3.

C5’. If (v1, . . . , vm) �= (0, . . . , 0), then add (v1, . . . , vm) as a new row to C, and
t−
∑

i airi as a new element to R. Append the power product t to B, and
merge {x1t, . . . , xnt} and L. Continue with step C2’.

It is an easy exercise to show that the output of the two algorithms agree and
that the two variants give the same arithmetic complexity, which is reported
[1,4,10] to be O(nm3) arithmetic operations. We now give a better bound.

Proposition 1. The arithmetic complexity of the algorithms given above agree
and an upper bound is O(nm2 + min(m, n)m3).

Proof. The arithmetic operations are performed in steps C3 and C4. Step C3 in-
volves an evaluation and a row reduction. To compute (t(p1), . . . , t(pm)) requires
m multiplications, since t = xit

′ for some xi and some t′ and t′(p1), . . . , t′(pm)
already has been evaluated. The row reduction requires O(m2) arithmetic oper-
ations. Step C4 consist of expressing

∑
i airi in the basis and is also an O(m2)

operation. Notice that the number of calls to C4 is exactly |B| = m, the num-
ber of calls to C5/C5’ is exactly |G| and thus, the number of calls to C3 is
exactly m + |G|. Thus, the number of arithmetic operations is proportional to
(m+|G|)·m2), so it is enough to prove that |G| is proportional to n+min(m, n)m.

The number of variables in B is at most min(n, m− 1) since the basis consist
of m elements and 1 ∈ B. Accordingly, if we let s denote the number of variables
in in(G), then n−min(n, m−1) ≤ s ≤ n (s = n only if m = 1). Now notice that
if xit is an element inserted into L, then, since xi < xit and xi is inserted into L
during the first step of the algorithm, xi will be treated before xit. This shows
that when we add a new element t to B and {x1t, . . . , xnt} to L, we know that
at most n− s of these elements would be added to in(G), because if xi ∈ in(G),
then xit ∈ in(G).

Since we add m elements to B, we see that the elements of degree more than
one in in(G) is at most m(n − s). We conclude that the number of elements in
in(G) is at most m(n− s) + s < m min(n, m− 1) + n.

Complexity of Comparing Monomials and Two Improvements 117

The parts of the algorithms that concern monomial manipulations are harder to
analyze. As stated in the introduction, the number of integer comparisons in the
monomial manipulation-part is reported to be proportional to n2m2, assuming
a standard order. We agree that this is an upper bound for the algorithm using
steps C2’ and C5’. Since it is not explained in [1] how to check if t is a multiple
of an element in L or of in(G), the actual behavior of this algorithm might be
worse than the algorithm using step C2’ and C5’, although the list L during the
former algorithm contains less elements than the list L during the latter.

To check if t is a multiple of an element in in(G) using step C2’ and C5’ is
simple and is due to the following nice observation given in [4], pp 336.

Lemma 13. Using steps C2’ and C5’, to check if t is a multiple of in(G) can
be replaced by checking if |supp(t)| > cp(t), where cp(t) denote the number of
copies of t in L.

We remark that this simplification of the check does not apply when using steps
C2 and C5.

3.2 Optimizing the BM-Algorithm

In order to improve the time complexity during the monomial manipulations
part, we will use a projection technique together with Theorem 1. The idea is
to identify a set Ess of the variables with the property that supp(B) ⊆ Ess
and |Ess| ≤ min(m − 1, n). Once the set Ess is identified, we only consider
monomials in the monoid generated by Ess, hence the associated order vectors
for the monomials is of length bounded by min(m− 1, n).

The projection technique is covered in the following lemma and is in some
sense inspired by [6,7].

Lemma 14. Let ≺ be a monomial order and let p1, . . . , pm be distinct points in
kn. In O(nm2) arithmetic operations plus time bounded by Varord≺(n), we can
determine a subset Ess of {x1, . . . , xn} with the following properties.

– supp(B) ⊆ Ess
– |Ess| ≤ min(m− 1, n)
– dimk(Ess(P)) = |Ess| (Ess(P) has full rank.)

Moreover, for any element xk /∈ Ess, we obtain a “pseudo-normal form” xk −∑
j ckjxij ∈ I(P) where xk " xij ∈ Ess if ckj �= 0.

Proof. We first determine i1, . . . , in such that xi1 " · · · " xin which has time
complexity Varord≺(n). Let

Ej =

⎧⎨⎩{} if j = 0
Ej−1 ∪ {xin−j+1} if xin−j+1 (P) /∈ span

k
{1(P), Ej−1(P)}

Ej−1 otherwise

and let Ess = En. It is clear that if xk /∈ Ess, then xk ∈ in(I), since xk can
be written as a linear combination of smaller elements, hence supp(B) ⊆ Ess.

118 S. Lundqvist

By a dimension argument, we have |Ess| ≤ m − 1 and since Ess is a subset
of the variables, clearly |Ess| ≤ n. By construction dimk(Ess(P)) = |Ess|. To
determine if xin−j+1(P) /∈ span

k
{1(P), Ej−1(P)} is O(m2) arithmetic operations

by using a matrix representation. This is repeated n times, which gives the
arithmetic complexity O(nm2). Finally, when xk /∈ Ess, we obtain an expression
xk =

∑
j ckjxij mod I(P) as a side effect of the matrix representation.

In the sequel, suppose that Ess = {xi1 , . . . , xin
}. Let π be the projection from kn

to kn with respect to Ess, that is, π((a1, . . . , an)) = (ai1 , . . . , ain
). Let π∗ be the

corresponding monomorphism from T = k[yi1 , . . . , yin] to S given by yij → xij .
If f is any element in T , then by construction π∗(f)(p) = f(π(p)). This shows
that if Ess(P) has full rank, so has (π∗)−1(Ess)(π(P)). It follows that the points
in π(P) are distinct. This leads us to use the following isomorphism result.

Lemma 15. Let p1, . . . , pm be distinct points i kn. Let I be the vanishing ideal
with respect to these points. Let π be a projection from kn to kn such that
π(p1), . . . , π(pm) are distinct. Let T = k[yi1 , . . . yin

] and let J be the vanish-
ing ideal with respect to π(p1), . . . , π(pm). Then S/I and T/J are isomorphic as
algebras.

Proof. Let π∗ be the map defined above. For f ∈ T we have π∗(f)(p) = f(π(p)).
Notice that f ∈ J is equivalent to f(π(qi)) = 0, ∀i, which is equivalent to
π∗(f)(pi) = 0, ∀i, which is equivalent to π∗(f) ∈ I. This allows us to extend
π∗ to a monomorphism from T/J to S/I. Since π(p1), . . . , π(pm) are distinct, we
have dimk(T/J) = dimk(S/I) and thus, the extension of π∗ is an isomorphism
of algebras.

Lemma 16. Let ≺ be a monomial order on S. Let Ess be a subset of the vari-
ables such that supp(B) ⊆ Ess, |Ess| ≤ min(m−1, n) and dimk(Ess(P)) = |Ess|,
where B is the monomials outside in(I(P)) with respect to ≺. Let π be the projec-
tion defined by π((a1, . . . , an)) = (ai1 , . . . , ain

) and let π∗ be the corresponding
monomorphism from T = k[yi1 , . . . , yin] to S. Let ≺′ be the monomial order
defined by yα ≺′ yβ if π∗(yα) ≺ π∗(yβ). Let B′ = {b′1, . . . , b′m} be the set of
monomials outside in(I(π(P)) with respect to ≺′. Then π∗(B′) = B.

Proof. Suppose that π∗(b′i) can be written as a linear combination of elements
in B; π∗(b′i) =

∑
j cjbj with π∗(b′i) " bj if cj �= 0. Since supp(B) ⊆ Ess, we

get b′i =
∑

j cj(π∗)−1(bj) with b′i "′ (π∗)−1(bj), which is a contradiction. Hence
π∗(B′) ⊆ B from which it follows that π∗(B′) = B by Lemma 15 and a dimension
argument.

Lemma 17. In the context of Lemma 14 and Lemma 16, suppose that xk −∑
j ckjxij ∈ I(P) for all xk outside Ess. Let G′ be a reduced Grbner basis for

I(π(P)). Then

G = π∗(G′) � {xk −
∑

j

ckjπ
∗(Nf((π∗)−1(xij), G

′))}

is a reduced Grbner basis for I(P).

Complexity of Comparing Monomials and Two Improvements 119

Proof. Since π∗(B′) is the complement of in(I(P)) by Lemma 16, it follows that
in(I(P)) is minimally generated by Essc � π∗(in(I(π(P)))). Clearly π∗(G′) is
contained in G. Thus, it is enough to prove that

xk −
∑

j

ckjπ
∗(Nf((π∗)−1(xij), G

′)) ∈ I(P)

and that xk is larger than any monomial occurring in the right hand sum. Since
xk −

∑
j ckjxij ∈ I(P), we have that

xk −
∑

j

ckj(π∗)(Nf((π∗)−1(xij), G
′)) ∈ I(P)

is equivalent to∑
j

ckjxij −
∑

j

ckj(π∗)(Nf((π∗)−1(xij), G
′)) ∈ I(P).

Using the monomorphism (π∗)−1 we see that this is equivalent to∑
j

ckj((π∗)−1(xij)−Nf((π∗)−1(xij), G
′) ∈ I(π(P)).

Since each term (π∗)−1(xij)−Nf((π∗)−1(xij), G
′) is in G′, we are done with the

first part. The second part follows since xk " xij if ckj �= 0 and each π∗(xij) is
written as a linear combination of elements less than π∗(xij) with respect to ≺′.

We now give an example of our method.

Example 3. Let p1 = (1, 1, 0, 1, 0), p2 = (2, 2, 1, 1, 1), p3 = (2, 0, 1, 1,−1), p4 =
(5, 3, 4, 1, 2) be points in Q5. Let ≺ be pure lex with respect to x1 " x2 " x3 "
x4 " x5. Using Lemma 14, we get Ess = {x3, x5} and x4 = 1, x2 = x5 + 1, x1 =
x3 +1, everything mod I(P). Thus, let π(a1, . . . , a5) = (a3, a5), let T = k[y1, y2]
and let π∗ be defined by y1 → x3 and y2 → x5. We have that ≺′ is lex with
y1 "′ y2 and

π(P) = {(0, 0), (1, 1), (1,−1), (4, 2)}.
A call to the BM-algorithm with π(P) and ≺′ yields B′ = {1, y2, y

2
2 , y

3
2} as the

set of monomials outside in(I(π(P))) and {y4
2 + 2y2 − y2

2 − 2y3
2, y1 − y2

2} as a
Grbner basis G′ for I(π(P)). Thus, a Grbner basis G for I(P) is

{x4
5 + 2x5 − x2

5 − 2x3
5, x3 − x2

5,

x4 − π∗(Nf((π∗)−1(1), G′)),

x2 − π∗(Nf((π∗)−1(x5), G′))− π∗(Nf((π∗)−1(1), G′)),

x1 − π∗(Nf((π∗)−1(x3), G′))− π∗(Nf((π∗)−1(1), G′))}
and the complement of in(I(P)) is

B = {(π∗)−1(1), (π∗)−1(y2), (π∗)−1(y2
2), (π

∗)−1(y3
2)} = {1, x5, x

2
5, x

3
5}.

120 S. Lundqvist

We have π∗(Nf((π∗)−1(1), G′)) = π∗(Nf(1, G′)) = π∗(1) = 1 and similarly
π∗(Nf((π∗)−1(x5), G′) = x5 since 1, x5 ∈ B. Since x3 is outside B, we get
π∗Nf((π∗)−1(x3), G′)) = π∗(Nf(y1, G

′)) = π∗(y2
2) = x2

5. Thus

G = {x4
5 + 2x5 − x2

5 − 2x3
5, x3 − x2

5, x4 − 1, x2 − x5 − 1, x1 − x2
5 − 1}.

Notice that although Ess = {x3, x5} were linearly independent with respect to
P , it did not follow that Ess ⊂ B.

To analyze the complexity of the method above, we first determine the cost
of the monomial manipulations.

Proposition 2. Let ≺ be a standard order. An upper bound for the time com-
plexity of the monomial manipulation part of the BM-algorithm using the pro-
jection technique is

O(min(m, n)m2 log(m))

Proof. Suppose that m < n. We can now use the projection technique described
above so that n ≤ m− 1. Since the projection technique only affects the arith-
metic complexity, we do not need to consider the cost for it in this analysis.
By Lemma 5, to determine ≺Ess is O(1). Everytime we insert an element into
B, we insert at most n elements into L. Thus, the number of elements in L
is bounded by nm. Thus, the complexity of the monomial manipulation part
is dominated by merging a sorted list of n monomials with a sorted list of at
most nm monomials, repeated m times. To compute ov(xix

α) given ov(xα) is
O(log(m)) by Lemma 3. Thus, each time an element is inserted into B, it is an
O(n log(m))-operation to create the list of monomials which we will merge with
L. Since we create at most m such lists, the total time needed for creation is
O(nm log(m)). Using Theorem 1 we see that each merge has time complexity
O(n2 max(log(m/n), 1) + nm log(n + m)).

If m ≥ n, then all arguments hold if we replace n by n. Thus, in general, each
merge has time complexity

O(min(m, n)2 max(log(m/ min(m, n)), 1) + min(m, n)m log(min(m, n) + m))

= O(min(m, n)m log(m))

by a straightforward calculation. Since there are exactly m − 1 merges, we get
the complexity

O(min(m, n)m2 log(m) + min(m, n)m log(m)),

where the last term comes from the creation process and is negligible.

Proposition 3. Let ≺ be an order defined by an integer matrix A. Let c =
max(|aij |). We give two upper bounds for the time complexity of the monomial
manipulation part of the BM-algorithm using the projection technique, based on
two different methods. When m ≥ n, the methods agree and an upper bound is

O(n2m log(cm) + nm2 log(n + m) + n2 log(c) log(n)).

Complexity of Comparing Monomials and Two Improvements 121

When m < n, the first method has the bound

O(m3 log(cm) + n2 log(c) log(n))

to which one needs to add the cost for O(nm2) arithmetic operations over Q,
while the second method has the bound

O(nm2 log(cm) + n2 log(c) log(n)).

Proof. First of all we need to determine Varord≺, an n2 log(c) log(n)-operation
by Lemma 8. Suppose that m < n. We can use the projection technique described
above and we now have two choices. Either we use Lemma 9 to construct an
n × n-matrix AEss using O(nm2) arithmetic operations over Q, or we can use
the n×n-submatrix of A, where we keep the columns that refers to the variables
in Ess.

In the first case, the cost for computing ov(xim) given ov(m) is O(n log(cm))
by Lemma 6, so the total time needed for the construction of the associated
order vectors is O(n2m log(cm)). By Lemma 7 and Theorem 1 we see that each
merge has time complexity

O(n2 log(cm) + nm log(n + m)) = O(m2 log(cm))

as we merge a list of n elements with at most nm elements. Since we make m−1
merges, we deduce that the overall time complexity of the first method is

O(m3 log(cm) + n2m log(cm) + n2 log(c) log(n))

= O(m3 log(cm) + n2 log(c) log(n))

to which we need to add O(nm2) arithmetic operations over Q.
The second method differs from the first in that the vectors are n-tuples rather

than n-tuples. Thus, computing ov(xim) given ov(m) is an n log(cm) operation,
so the total time needed for the construction process is O(nnm log(cm)). Each
merge requires time O(nn log(cm) + nm log(n + m)) = O(nm log(cm)), so the
overall time complexity of the second method becomes

O(nm2 log(cm) + nnm log(cm) + n2 log(c) log(n))

= O(nm2 log(cm) + n2 log(c) log(n)).

When m ≥ n, we do not need to project and the two methods agree. The cost
for the construction of the associated order vectors becomes O(n2m log(cm)),
each merge is n2 log(cm) + nm log(n + m) and thus an upper bound is

O(n2m log(cm) + nm2 log(n + m) + n2m log(cm) + n2 log(c) log(n)).

We are ready to state the main theorem.

122 S. Lundqvist

Theorem 2. An upper bound for the arithmetic complexity of the BM-algorithm
using steps C1, C2’, C3, C4 and C5’ and the projection technique based on
Lemma 14 is

O(nm2 + min(m, n)m3).

To this we need to add the time complexity

O(min(m, n)m2 log(m))

when ≺ is standard.
When ≺ is given by a matrix A = (aij) with c = max(|aij |), there are two

methods to use. When m ≥ n, the methods agree and an upper bound is

O(n2m log(cm) + nm2 log(n + m) + n2 log(c) log(n)).

When m < n, the first method has the bound

O(m3 log(cm) + n2 log(c) log(n))

to which one needs to add the cost for O(nm2) arithmetic operations over Q,
while the second method has the bound

O(nm2 log(cm) + n2 log(c) log(n)).

Proof. The complexity for the monomial manipulation part follows from Propo-
sition 2 and Proposition 3.

The call to the BM-algorithm, with or without projection, is
O(nm2 + min(m, n)m3) by Proposition 1. However, if we use the projection
technique, we will get the set B′ of monomials outside in(I(π(P))) and a Grbner
basis G′ for in(I(π(P))). By Lemma 16, B = π∗(B′) and by Lemma 17,

G = π∗(G′) � {xk −
∑

j

ckjπ
∗(Nf((π∗)−1(xij), G

′))}.

So we are done if we can show that each xk −
∑

j ckjπ
∗(Nf((π∗)−1(xij), G′)) is

computable within O(m2) arithmetic operations. To get a short proof, we will not
use the information xk−

∑
j ckjxij ∈ I. Instead we compute the evaluation vector

(xk(p1), . . . , xk(pm)) = (p1k, . . . , pmk) and write it as a linear combination of the
elements in B, an operation which requires O(m2) arithmetic operations. Since B
is a basis, the linear combination will then equal

∑
j ckjπ

∗(Nf((π∗)−1(xij), G′)).

The following corollary states that our version of the BM-algorithm is prefarable
to the EssGB-algorithm [7].

Corollary 1. When m < n and the order is standard, the BM-algorithm using
steps C1, C2’, C3, C4 and C5’ and the projection technique based on Lemma 14
has arithmetic complexity

O(nm2 + m4).

To this we need to add the time complexity

O(m3 log(m)).

Complexity of Comparing Monomials and Two Improvements 123

3.3 Applications to the FGLM-Algorithm and for Ideals Defined by
Functionals

As was noticed in [10], both the FGLM- and the BM-algorithm are instances
of definitions of an ideal defined by means of a finite set of functionals Li :
k[x1, . . . , xn]→ k, such that I is in the kernel of Ψ : k[x1, . . . , xn]→ km, Ψ(f) =
L1(f), . . . , Lm(f). For the BM-setting, the functionals are defined by Li(f) =
f(pi) and in the FGLM-setting, the functionals are defined by Nf(f, G1) =∑

Li(f)ei. In [10], a list of different problems that can be seen as instances
of an ideal defined by functionals is given.

If we use the steps C1,C2’,F3,C4,C5’ of the BM-algorithm where F3 is defined
below, we obtain Algorithm 1 in [10].

F3 Compute Ψ(t) = (b1, . . . , bm) and reduce it against the rows of C to obtain

(v1, . . . , vm) = (b1, . . . , bm)−
∑

i

ai(ci1, . . . , cim) ai ∈ k.

It is reported in [10] Theorem 5.1, that Algorithm 1 in [10] needs O(nm3 +
fnm2) arithmetic operations, where f denotes the cost of evaluating a func-
tional. However, as for the BM-algorithm, one can replace the term nm3 by
m4 + nm2. Since we have shown (Proposition 1) that the number of calls to
C3 equals |G| + m = n + min(m, n)m + m, one can replace the term fnm2 by
fnm + f min(m, n)m2 + fm. Thus, Algorithm 1 in [10] uses O(min(m, n)m3 +
nm2 + fnm + f min(m, n)m2) arithmetic operations. In the BM- or the FGLM-
situation, it is shown in [10] that f = 1, by a recursive argument.

To the arithmetic complexity one needs to add the cost for the monomial
manipulations, which is the same as for the BM-algorithm, since it is clear that
we can use the projection technique described in Lemma 14 if we replace

xin−j+1(P) /∈ span
k
{1(P), Ej−1(P)}

by
Ψ(xin−j) /∈ span

k
{Ψ(1), Ψ(xin−j+2), . . . , Ψ(xin)}.

It follows that Theorem 2 can be lifted to the general setting of ideals defined
by functionals. We state

Theorem 3. An upper bound for the arithmetic complexity of Algorithm 1 in
[10] using the projection technique is

O(min(m, n)m3 + nm2 + fnm + f min(m, n)m2).

To this we need to add the time complexity

O(min(m, n)m2 log(m))

when ≺ is standard.

124 S. Lundqvist

When ≺ is given by a matrix A = (aij) with c = max(|aij |), there are two
methods to use. When m ≥ n, the methods agree and an upper bound is

O(n2m log(cm) + nm2 log(n + m) + n2 log(c) log(n)).

When m < n, the first method has the bound

O(m3 log(cm) + n2 log(c) log(n))

to which one needs to add the cost for O(nm2) arithmetic operations over Q,
while the second method has the bound

O(nm2 log(cm) + n2 log(c) log(n)).

4 Discussion and Future Work

The projection idea can be used for ideals defined by projective points and also
in the non-commutative versions of the FGLM-algorithm, given in [2]. It should
be remarked that the monomial manipulations with respect to non-commuting
variables is computationally harder than those for commuting variables.

Future work involves the question: Why do we need a Grbner basis for ideals
defined by vanishing points? In the biological applications, where one is primarily
interested in normal form computations, it seems enough to compute a set B
such that [B] is a k-basis for S/I.

References

1. Abbott, J., Bigatti, A., Kreuzer, M., Robbiano, L.: Computing ideals of points. J.
Symb. Comput. 30(4), 341–356 (2000)

2. Borges-Trenard, M.A., Borges-Quintana, M., Mora, T.: Computing Gröbner bases
by FGLM techniques in a non-commutative setting. J. Symb. Comput. 30(4), 429–
449 (2000)

3. Buchberger, B., Möller, M.: The construction of multivariate polynomials with
preassigned zeroes. In: Calmet, J. (ed.) ISSAC 1982 and EUROCAM 1982. LNCS,
vol. 144, pp. 24–31. Springer, Heidelberg (1982)

4. Faugre, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of Zero-
Dimensional Gröbner Basis by Change of Ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

5. Frer, M.: Faster integer multiplication. In: Proceedings of the 39th ACM STOC
2007 conference, pp. 57–66 (2007)

6. Just, W., Stigler, B.: Computing Gröbner bases of ideals of few points in high
dimensions. Communications in Computer Algebra 40(3), 65–96 (2006)

7. Just, W., Stigler, B.: Efficiently computing Groebner bases of ideals of points (2007)
(arXiv:0711.3475)

8. Kühnle, K., Mayr, E.W.: Exponential space computation of Gröbner bases. In:
ISSAC 1996: Proceedings of the 1996 international symposium on Symbolic and
algebraic computation, pp. 63–71 (1996)

Complexity of Comparing Monomials and Two Improvements 125

9. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse-
engineering of gene regulatory networks. J. Theor. Biol. 229, 523–537 (2004)

10. Marinari, M., Möller, H.M., Mora, T.: Gröbner bases of ideals defined by func-
tionals with an application to ideals of projective points. Applicable Algebra in
Engineering, Communication and Computing 4, 103–145 (1993)

11. Robbiano, L.: Term orderings on the polynomial ring. In: Caviness, B.F. (ed.) IS-
SAC 1985 and EUROCAL 1985. LNCS, vol. 204, pp. 513–517. Springer, Heidelberg
(1985)

Invited Talk:
Decoding Cyclic Codes: The Cooper Philosophy

(Extended Abstract)

Teo Mora1 and Emmanuela Orsini2

1 Department of Mathematics,
University of Genoa, Italy
theomora@disi.unige.it

2 Department of Mathematics,
University of Milan, Italy

orsini@posso.dm.unipi.it

In 1990, Cooper [9, 10] suggested to use Gröbner basis [3, 4] computation in
order to deduce error locator polynomials of cyclic codes.

Following his idea, Chen et al. [6, 7, 8] suggested a general algorithm to pursue
Cooper’s approach. The aim of the talk is to follow, on an illuminating example,
the arguments which, through a series of papers [5, 12, 13], led to the following
result (for an extension see [11]):

Theorem 1. [13] For each [n, k, d] binary cyclic code C with n odd, denoting F
the splitting field of xn − 1 over Z2, a proper Gröbner basis computation allows
to produce a polynomial L ∈ Z2[X, z], where X = (x1, . . . , xn−k) which satisfies
the following properties:

1. L(X, z) = zt + at−1(X)zt−1 + · · ·+ a0(X), with aj ∈ Z2[X], 0 ≤ j ≤ t− 1;
2. given a syndrome vector s = (s1, . . . , sn−k) ∈ (F)n−k corresponding to an

error with weight µ ≤ t, if we evaluate the X variables in s, then the t roots
of L(s, z) are the µ error locations plus zero counted with multiplicity t− µ.

We illustrate the efficiency of this approach on the recent results discussed in
[14, 15] and we also discuss an alternative approach to the solution of the Cooper
problem proposed in [1, 2].

References

1. Augot, D., Bardet, M., Faugere, J.C.: Efficient decoding of (binary) cyclic codes
above the correction capacity of the code using Gröbner bases. In: Proc. IEEE Int.
Symp. Information Theory 2003 (2003)

2. Augot, D., Bardet, M., Faugere, J.C.: On formulas for decoding binary cyclic codes.
In: Proc. IEEE Int. Symp. Information Theory 2007 (2007)

3. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Rest-
klassenringes nach einem nulldimensionalen Polynomideal, Ph. D. Thesis, Innsbruck
(1965)

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 126–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Invited Talk: Decoding Cyclic Codes 127

4. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebrai-
schen Gleichungssystems. Aeq. Math. 4, 374–383 (1970)

5. Caboara, M.: The Chen-Reed-Helleseth-Truong Decoding Algorithm and the
Gianni-Kalkbrenner Gröbner Shape Theorem. J. AAECC 13 (2002)

6. Chen, X., Reed, I.S., Helleseth, T., Truong, K.: Use of Gröbner Bases to Decode
Binary Cyclic Codes up to the True Minimum Distance. IEEE Trans. on Inf. Th. 40,
1654–1661 (1994)

7. Chen, X., Reed, I.S., Helleseth, T., Truong, K.: General Principles for the Algebraic
Decoding of Cyclic Codes. IEEE Trans. on Inf. Th. 40, 1661–1663 (1994)

8. Chen, X., Reed, I.S., Helleseth, T., Truong, K.: Algebraic decoding of cyclic codes:
A polynomial Ideal Point of View. Contemporary Mathematics 168, 15–22 (1994)

9. Cooper III, A.B.: Direct solution of BCH decoding equations. In: Arikan, E. (ed.)
Communication, Control and Singal Processing, pp. 281–286. Elsevier, Amsterdam
(1990)

10. Cooper III, A.B.: Finding BCH error locator polynomials in one step. Electronic
Letters 27, 2090–2091 (1991)

11. Giorgetti, M., Sala, M.: A commutative algebra approach to linear codes, BCRI
preprint, 58, UCC Cork, Ireland (2006), www.bcri.ucc.ie

12. Loustaunau, P., York, E.V.: On the decoding of cyclic codes using Gröbner bases.
J. AAECC 8, 469–483 (1997)

13. Orsini, E., Sala, M.: Correcting errors and erasures via the syndrome variety. J.
Pure Appl. Algebra 200, 191–226 (2005)

14. Orsini, E., Sala, M.: General error locator polynomials for binary cyclic codes with
t ≤ 2 and n < 63. IEEE Trans. Inform. Theory 53, 1095–1107 (2007)

15. Orsini, E., Sala, M.: General error locator polynomials for binary cyclic codes with
t ≤ 2 and n < 63, BCRI preprint (2005), http://www.bcri.ucc.ie

www.bcri.ucc.ie
http://www.bcri.ucc.ie

Kernel Dimension for Some Families of
Quaternary Reed-Muller Codes�

J. Pernas, J. Pujol, and M. Villanueva

Dept. of Information and Communications Engineering,
Universitat Autònoma de Barcelona, Spain

{jaume.pernas,jaume.pujol,merce.villanueva}@autonoma.edu

Abstract. Recently, new families of quaternary linear Reed-Muller
codes such that, after the Gray map, the corresponding Z4-linear codes
have the same parameters and properties as the codes in the usual binary
linear Reed-Muller family have been introduced. A structural invariant,
the kernel dimension, for binary codes can be used to classify these Z4-
linear codes. The kernel dimension for these Z4-linear codes is established
generalizing the known results about the kernel dimension for Z4-linear
Hadamard and Z4-linear extended 1-perfect codes.

Keywords: Kernel dimension, quaternary codes, Reed-Muller codes,
Z4-linear codes.

1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and modulo 4, respectively.
Let Zn

2 be the set of all binary vectors of length n and let Zn
4 be the set of

all quaternary vectors of length n. Any nonempty subset C of Zn
2 is a binary

code and a subgroup of Zn
2 is called a binary linear code or a Z2-linear code.

Equivalently, any nonempty subset C of Zn
4 is a quaternary code and a subgroup

of Zn
4 is called a quaternary linear code.

The Hamming distance dH(u, v) between two vectors u, v ∈ Zn
2 is the number

of coordinates in which u and v differ. The Hamming weight of a vector u ∈ Zn
2 ,

denoted by wH(u), is the number of nonzero coordinates of u. The minimum
Hamming distance of a binary code C is the minimum value of dH(u, v) for
u, v ∈ C satisfying u �= v. The minimum Hamming weight of a binary code C,
denoted by wmin(C), is the minimum value of wH(u), for u ∈ C \ {0}.

We define the Lee weights over the elements in Z4 as: wL(0) = 0, wL(1) =
wL(3) = 1, wL(2) = 2. The Lee weight of a vector u ∈ Zn

4 , denoted by wL(u), is
the addition of the weights of its coordinates, whereas the Lee distance dL(u, v)
between two vectors u, v ∈ Zn

4 is dL(u, v) = wL(u − v). The minimum Lee
distance of a quaternary code C is the minimum value of dL(u, v) for u, v ∈ C
satisfying u �= v. The minimum Lee weight of a quaternary code C, denoted by
wmin(C), is the minimum value of wL(0, u), for u ∈ C \ {0}.
� This work was supported in part by the Spanish MEC and the European FEDER

under Grant MTM2006-03250.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 128–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Kernel Dimension for Some Families 129

The Gray map, φ : Zn
4 −→ Z2n

2 given by φ(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn))
where ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0), is an isome-
try which transforms Lee distances defined in a quaternary code C over Zn

4 to
Hamming distances defined in the corresponding binary code C = φ(C). There-
fore, wmin(C) = wmin(C). Note that the binary length of the binary code C is
N = 2n.

Let C be a quaternary linear code. Since C is a subgroup of Zn
4 , it is isomorphic

to an abelian structure Zγ
2 × Zδ

4. Therefore, C is of type 2γ4δ as a group, it has
|C| = 2γ+2δ codewords and 2γ+δ codewords of order two. Moreover, the binary
image C = φ(C) of any quaternary linear code C of length n and type 2γ4δ is
called a Z4-linear code of binary length N = 2n and type 2γ4δ.

Two binary codes C1 and C2 of length n are said to be isomorphic if there is
a coordinate permutation π such that C2 = {π(c) : c ∈ C1}. They are said to
be equivalent if there is a vector a ∈ Zn

2 and a coordinate permutation π such
that C2 = {a+π(c) : c ∈ C1} [14]. Two quaternary linear codes C1 and C2 both
of length n and type 2γ4δ are said to be monomially equivalent, if one can be
obtained from the other by permuting the coordinates and (if necessary) chang-
ing the signs of certain coordinates. They are said to be permutation equivalent
if they differ only by a permutation of coordinates [12]. Note that if two quater-
nary linear codes C1 and C2 are monomially equivalent, then the corresponding
Z4-linear codes C1 = φ(C1) and C2 = φ(C2) are isomorphic.

Two structural invariants for binary codes are the rank and dimension of the
kernel. The rank of a binary code C, denoted by rC , is simply the dimension
of 〈C〉, which is the linear span of the codewords of C. The kernel of a binary
code C, denoted by K(C), is the set of vectors that leave C invariant under
translation, i.e. K(C) = {x ∈ Zn

2 : C + x = C}. If C contains the all-zero
vector, then K(C) is a binary linear subcode of C. In general, C can be written
as the union of cosets of K(C), and K(C) is the largest such linear code for
which this is true [1]. The dimension of the kernel of C will be denoted by kC .

These two invariants do not give a full classification of binary codes, since
two nonequivalent binary codes could have the same rank and dimension of the
kernel. In spite of that, they can help in classification, since if two binary codes
have different ranks or dimensions of the kernel, they are nonequivalent.

In [10], Hammons et al. showed that several families of binary codes are Z4-
linear. In particular, they considered the binary linear Reed-Muller family of
codes, denoted by RM , and proved that the binary linear rth-order Reed-Muller
code RM(r, m) of length 2m is Z4-linear for r = 0, 1, 2, m− 1, m and is not Z4-
linear for r = m− 2 (m ≥ 5). In a subsequent work [11], Hou et al. proved that
RM(r, m) is not Z4-linear for 3 ≤ r ≤ m− 2 (m ≥ 5).

It is well-known that an easy way to built the binary linear Reed-Muller family
of codes RM is using the Plotkin construction [14]. In [16],[17], new quaternary
Plotkin constructions were introduced to build new families of quaternary linear
Reed-Muller codes, denoted by RMs. The quaternary linear Reed-Muller codes
RMs(r, m) of length 2m−1, for m ≥ 1, 0 ≤ r ≤ m and 0 ≤ s ≤
m−1

2 �, in
these new families satisfy that the corresponding Z4-linear codes have the same

130 J. Pernas, J. Pujol, and M. Villanueva

parameters and properties (length, dimension, minimum distance, inclusion and
duality relationship) as the binary linear codes in the well-known RM family.
Contrary to the binary linear case, where there is only one family, in the qua-
ternary case there are
m+1

2 � families for each value of m. These families will be
distinguished using subindexes s from the set {0, . . . ,
m−1

2 �}.
The dimension of the kernel and rank have been studied for some fami-

lies of Z4-linear codes [2],[5],[6],[13],[15]. In the RM family, the RM(1, m) and
RM(m−2, m) binary codes are a linear Hadamard and extended 1-perfect code,
respectively. Recall that a Hadamard code of length n = 2m is a binary code with
2n codewords and minimum Hamming distance n/2, and an extended 1-perfect
code of length n = 2m is a binary code with 2n−m codewords and minimum
Hamming distance 4. Equivalently, in the RMs families, the corresponding Z4-
linear code of any RMs(1, m) and RMs(m−2, m) is a Hadamard and extended
1-perfect code, respectively [16],[17]. For the corresponding Z4-linear codes of
RMs(1, m) and RMs(m − 2, m), the rank and kernel dimension were studied
and computed in [6],[13],[15]. Specifically,

kH =
{

γ + δ + 1 if s ≥ 2
γ + 2δ if s = 0, 1 and kP =

⎧⎨⎩ γ̄ + δ̄ + 1 if s ≥ 2
γ̄ + δ̄ + 2 if s = 1
γ̄ + δ̄ + m if s = 0.

, (1)

where H = φ(RMs(1, m)) of type 2γ4δ and P = φ(RMs(m − 2, m)) of type
2γ̄4δ̄.

The aim of this paper is the study of the dimension of the kernel for the
quaternary linear Reed-Muller families of codes RMs, generalizing the known
results about the kernel dimension for theRMs(1, m) andRMs(m−2, m) codes.
The paper is organized as follows. In Section 2, we recall some properties related
to quaternary linear codes and the kernel of these codes. Moreover, we describe
the construction of the RMs families of codes. In Section 3, we establish the
dimension of the kernel for all codes in the RMs family with s = 0. In Section 4,
we give the main results about the kernel dimension for all the RMs families.
Finally, the conclusions are given in Section 5.

Magma is a software package designed to solve computationally hard prob-
lems in algebra, number theory, geometry and combinatorics. Currently it sup-
ports the basic facilities for linear codes over integer residue rings and Galois
rings (see [7]), including additional functionality for the special case of codes
over Z4, or equivalently quaternary linear codes. New functions that expand the
current functionality for codes over Z4 have been developed by the authors as a
new package. Specifically, these functions allow to construct the RMs families
and some Plotkin constructions for quaternary linear codes. Moreover, efficient
functions for computing the rank and dimension of the kernel of any quaternary
linear code are included. A beta version of this new package and the manual
with the description of all functions can be downloaded from the web page
http://www.ccg.uab.cat.

Kernel Dimension for Some Families 131

2 Preliminaries

2.1 Quaternary Linear Codes

Let C be a quaternary linear code of length n and type 2γ4δ. Although C is not
a free module, every codeword is uniquely expressible in the form

γ∑
i=1

λiui +
δ∑

j=1

µjvj ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, µj ∈ Z4 for 1 ≤ j ≤ δ and ui, vj are vectors in Zn
4

of order two and four, respectively. The vectors ui, vj give us a generator matrix
G of size (γ + δ)× n for the code C. Moreover, G will also be used to denote the
set of all vectors ui, vj .

In [10], it was shown that any quaternary linear code of type 2γ4δ is permu-
tation equivalent to a quaternary linear code with a canonical generator matrix
of the form (

2T 2Iγ 0
S R Iδ

)
,

where R, T are matrices over Z2 of size δ × γ and γ × (n− γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n− γ − δ).

The concepts of duality for quaternary linear codes were also studied in [10],
where the inner product for any two vectors u, v ∈ Zn

4 is defined as

u · v =
n∑

i=1

uivi ∈ Z4.

Then, the dual code of C, denoted by C⊥, is defined in the standard way

C⊥ = {v ∈ Zn
4 : u · v = 0 for all u ∈ C}.

The corresponding binary code φ(C⊥) is denoted by C⊥ and called the Z4-dual
code of C. Moreover, the dual code C⊥, which is also a quaternary linear code,
is of type 2γ4n−γ−δ.

The all-zero and all-one vector will be denoted by 0 and 1, respectively. It
will be clear by the context whether we refer to binary vectors or quaternary
vectors.

Let C be a quaternary linear code and let C = φ(C) be the corresponding
Z4-linear code with kernel K(C). The kernel of C, denoted by K(C), is defined as
the inverse Gray map image of K(C), that is K(C) = φ−1(K(C)). Furthermore,
the dimension of the kernel of C is defined as the dimension of the kernel of
C = φ(C), and also denoted by kC .

Let u ∗ v denote the component-wise product for any u, v ∈ Zn
4 .

Lemma 1 ([8],[9]). Let C be a quaternary linear code. Then,

K(C) = {u : u ∈ C and 2u ∗ v ∈ C, ∀v ∈ C}.

132 J. Pernas, J. Pujol, and M. Villanueva

Note that if G is a generator matrix of a quaternary linear code C, then u ∈ K(C)
if and only if u ∈ C and 2u ∗ v ∈ C for all v ∈ G. Moreover, by Lemma 1, all
codewords of order two in C belong to K(C). It is also clear that if the vector 1
belongs to C, then it is also in K(C). Finally, note that K(C) is a linear subcode
of C [8],[9].

2.2 Quaternary Linear Reed-Muller Codes

Recall that a binary linear rth-order Reed-Muller code RM(r, m) with 0 ≤ r ≤
m and m ≥ 2 can be described using the Plotkin construction as follows [14]:

RM(r, m) = {(u|u + v) : u ∈ RM(r, m− 1), v ∈ RM(r − 1, m− 1)},

where RM(0, m) is the repetition code {0,1}, RM(m, m) is the universe code,
and “|” denotes concatenation. For m = 1, there are only two codes: the repe-
tition code RM(0, 1) and the universe code RM(1, 1). This RM family has the
parameters and properties quoted in the following proposition.

Proposition 2 ([14]). A binary linear rth-order Reed-Muller code RM(r, m)
with m ≥ 1 and 0 ≤ r ≤ m has the following parameters and properties:

1. the length is n = 2m;
2. the minimum Hamming distance is d = 2m−r;

3. the dimension is k =
r∑

i=0

(
m

i

)
;

4. the code RM(r − 1, m) is a subcode of RM(r, m) for 0 < r ≤ m;
5. the code RM(r, m) is the dual code of RM(m− 1− r, m) for 0 ≤ r < m.

In the recent literature [2],[3],[10],[18],[19] several families of quaternary linear
codes have been proposed and studied trying to generalize the RM family. How-
ever, when the corresponding Z4-linear codes are taken, they do not satisfy
all the properties quoted in Proposition 2. In [16],[17], new quaternary linear
Reed-Muller families, RMs, such that the corresponding Z4-linear codes have
the parameters and properties described in Proposition 2, were proposed. The
following two Plotkin constructions are necessary to generate these new RMs

families.

Definition 3 (Plotkin Construction). Let A and B be two quaternary linear
codes of length n, types 2γA4δA and 2γB4δB , and minimum distances dA and
dB, respectively. A new quaternary linear code PC(A,B) is defined as

PC(A,B) = {(u|u + v) : u ∈ A, v ∈ B}.

It is easy to see that if GA and GB are generator matrices ofA and B, respectively,
then the matrix

GPC =
(
GA GA
0 GB

)
is a generator matrix of the code PC(A,B). Moreover, the code PC(A,B) is of
length 2n, type 2γA+γB4δA+δB , and minimum distance d = min{2dA, dB} [16],[17].

Kernel Dimension for Some Families 133

Definition 4 (BQ-Plotkin Construction). Let A, B, and C be three quater-
nary linear codes of length n; types 2γA4δA , 2γB4δB , and 2γC4δC ; and minimum
distances dA, dB, and dC, respectively. Let GA, GB, and GC be generator matrices
of the codes A, B, and C, respectively. A new code BQ(A,B, C) is defined as the
quaternary linear code generated by

GBQ =

⎛⎜⎜⎝
GA GA GA GA
0 G′B 2G′B 3G′B
0 0 ĜB ĜB
0 0 0 GC

⎞⎟⎟⎠ ,

where G′B is the matrix obtained from GB after switching twos by ones in their γB
rows of order two, and ĜB is the matrix obtained from GB after removing their
γB rows of order two.

The code BQ(A,B, C) is of length 4n, type 2γA+γC 4δA+γB+2δB+δC , and minimum
distance d = min{4dA, 2dB, dC} [16],[17].

Now, the quaternary linear Reed-Muller codes RMs(r, m) of length 2m−1,
for m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤
m−1

2 �, will be defined. For the recursive
construction it will be convenient to define them also for r < 0 and r > m. We
begin by considering the trivial cases. The codeRMs(r, m) with r < 0 is defined
as the zero code. The code RMs(0, m) is defined as the repetition code with
only the all-zero and all-two vectors. The code RMs(r, m) with r ≥ m is defined
as the whole space Zm−1

4 . For m = 1, there is only one family with s = 0, and
in this family there are only the zero, repetition and universe codes for r < 0,
r = 0 and r ≥ 1, respectively. In this case, the generator matrix of RM0(0, 1) is
G0(0,1) =

(
2
)

and the generator matrix of RM0(1, 1) is G0(1,1) =
(
1
)
.

For any m ≥ 2, given RMs(r, m − 1) and RMs(r − 1, m − 1) codes, where
0 ≤ s ≤
m−2

2 �, the RMs(r, m) code can be constructed in a recursive way
using the Plotkin construction given by Definition 3 as follows:

RMs(r, m) = PC(RMs(r, m− 1),RMs(r − 1, m− 1)).

For example, for m = 2, the generator matrices of RM0(r, 2), 0 ≤ r ≤ 2, are
the following:

G0(0,2) =
(
2 2
)
; G0(1,2) =

(
0 2
1 1

)
; G0(2,2) =

(
1 0
0 1

)
.

Note that when m is odd, the RMs family with s = m−1
2 can not be generated

using the Plotkin construction. In this case, for any m ≥ 3, m odd and s = m−1
2 ,

given RMs−1(r, m − 2), RMs−1(r − 1, m − 2) and RMs−1(r − 2, m − 2), the
RMs(r, m) code can be constructed using the BQ-Plotkin construction given
by Definition 4 as follows:

RMs(r, m) = BQ(RMs−1(r, m−2),RMs−1(r−1, m−2),RMs−1(r−2, m−2)).

For example, for m = 3, there are two families. The RM0 family can be gen-
erated using the Plotkin construction. On the other hand, the RM1 family has

134 J. Pernas, J. Pujol, and M. Villanueva

to be generated using the BQ-Plotkin construction. The generator matrices of
RM1(r, 3), 0 ≤ r ≤ 3, are the following: G1(0,3) =

(
2 2 2 2

)
;

G1(1,3) =
(

1 1 1 1
0 1 2 3

)
; G1(2,3) =

⎛⎜⎜⎝
1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 2

⎞⎟⎟⎠ ; G1(3,3) =

⎛⎜⎜⎝
1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ .

Table 1 shows the type 2γ4δ of all these RMs(r, m) codes for m ≤ 7.
The following proposition summarizes the parameters and properties of these

RMs families of codes.

Proposition 5 ([16],[17]). A quaternary linear Reed-Muller code RMs(r, m),
with m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤
m−1

2 �, has the following parameters and
properties:

1. the length is n = 2m−1;
2. the minimum Lee distance is d = 2m−r;

3. the number of codewords is 2k, where k =
r∑

i=0

(
m

i

)
;

4. the code RMs(r − 1, m) is a subcode of RMs(r, m) for 0 ≤ r ≤ m;
5. the codes RMs(1, m) and RMs(m−2, m), after the Gray map, are Z4-linear

Hadamard and Z4-linear extended perfect codes, respectively;
6. the code RMs(r, m) is the dual code of RMs(m−1−r, m) for −1 ≤ r ≤ m.

In the next two sections, for all these codes RMs(r, m) we will establish the
dimension of the kernel, which will be denoted by ks(r,m) instead of kRMs(r,m).

3 Kernel Dimensions for the RMs Family with s = 0

In this section, we will compute the dimension of the kernel for the quaternary
linear Reed-Muller codes in the RMs family with s = 0. As we have shown in
Subsection 2.2, these codes can be constructed using the Plotkin construction.

Let C be a quaternary linear code. The code 2C is obtained from C by multi-
plying by two all codewords of C. Note that if G is a generator matrix of C, then
2G is a generator matrix of 2C.
Lemma 6. For all m ≥ 1 and r ∈ {0, . . . , m−1}, 2RM0(r+1, m) ⊆ RM0(r, m).

Proof. We proceed by induction. For m = 1, there are the zero, repetition and
universe codes for r < 0, r = 0, and r > 0, respectively. The lemma is true for
these codes.

For m ≥ 2, assume that the result is true. Let Gr−1,m−1, Gr,m−1 and Gr+1,m−1
be generator matrices of RM0(r−1, m−1), RM0(r, m−1) and RM0(r+1, m−
1), respectively. Using the Plotkin construction given by Definition 3 we obtain
two new codes RM0(r, m) and RM0(r + 1, m) with generator matrices

Gr,m =
(
Gr,m−1 Gr,m−1

0 Gr−1,m−1

)
,Gr+1,m =

(
Gr+1,m−1 Gr+1,m−1

0 Gr,m−1

)
,

Kernel Dimension for Some Families 135

respectively. Since 2RM0(r + 1, m− 1) ⊆ RM0(r, m− 1), the submatrix
2(Gr+1,m−1 Gr+1,m−1) generates a code contained in the code generated by the
submatrix (Gr,m−1 Gr,m−1). The same argument can be used for the submatri-
ces (0 Gr,m−1) and (0 Gr−1,m−1). Thus the code 2RM0(r + 1, m) generated
by 2Gr+1,m is contained in the code RM0(r, m) generated by Gr,m. ��

Let Wm−1 be the set of order four vectors {wm−1
1 , . . . , wm−1

m } over Z2m−1

4 defined
as follows:

wm−1
1 = 12m−1

= 1,

wm−1
i = (02m−i |12m−i

)2
i−2

, for i ∈ {2, . . . , m}.

Note that, for i ∈ {2, . . . , m− 1}, we have that (wm−2
i |wm−2

i) = wm−1
i+1 .

By Proposition 5, since the corresponding Z4-linear code of any RMs(1, m)
is a Hadamard code, 1 ∈ RMs(1, m) [13]. Moreover, for all r ≥ 1, the vector
1 ∈ RMs(r, m) by the inclusion property, and also belongs to the kernel of
RMs(r, m) by Lemma 1.

Lemma 7. For all m ≥ 2 and r ∈ {2, . . . , m}, Wm−1 is a subset of RM0(r, m).

Proof. It is clear that wm−1
1 = 1 ∈ RM0(r, m) for r ≥ 1 and 0 ∈ RM0(r, m)

for r ≥ 0. Hence, for m = 1, W 0 = {1} is a subset of RM0(1, 1). For m ≥ 2, the
subsequent RM0(r, m) codes are obtained using the Plotkin construction given
by Definition 3 as follows:

RM0(r, m) = PC(RM0(r, m− 1),RM0(r − 1, m− 1)).

We proceed by induction on m. For m = 2, we have the set W 1 = {w1
1, w

1
2}

and the lemma is true, since RM0(r, 2) is the universe code for r ≥ 2.
For m ≥ 3, since 0 ∈ RM0(r, m−1) and 1 ∈ RM0(r−1, m−1) for r ≥ 2, then

(0|0+1) = wm−1
2 ∈ RM0(r, m) for r ≥ 2. In general, if x ∈ RM0(r, m−1), then

(x|x + 0) = (x|x) ∈ RM0(r, m). Since wm−2
i ∈ RM0(r, m − 1), for r ≥ 2 and

2 ≤ i ≤ m− 1, it is clear that (wm−2
i |wm−2

i) = wm−1
i+1 ∈ RM0(r, m). Therefore,

wm−1
i ∈ RM0(r, m) for r ≥ 2 and 1 ≤ i ≤ m. ��

By Lemma 7, for all m ≥ 2 and r ∈ {2, . . . , m}, there is a generator matrix

G0(r,m) =
(
Gγ

Gδ

)
of the code RM0(r, m) of type 2γ4δ, such that Wm−1 is a

submatrix of Gδ, where Gγ and Gδ are the γ and δ generators of order two and
four, respectively. In Proposition 10, for all m ≥ 4 and r ∈ {2, . . . , m − 2}, we
will show that the kernel of RM0(r, m) is generated by the matrix⎛⎝ Gγ

2Gδ

Wm−1

⎞⎠ . (2)

136 J. Pernas, J. Pujol, and M. Villanueva

Lemma 8. Let C1 and C2 be two quaternary linear codes of length n with gen-
erator matrices G1 and G2, respectively, such that C2 ⊆ C1. Let C = PC(C1, C2) of
length 2n. If x ∈ C1 and y ∈ C2, then (x|x + y) ∈ K(C) if and only if x ∈ K(C1),
2y ∗ u ∈ C2, and 2x ∗ v ∈ C2, for all u ∈ G1 and v ∈ G2.

Proof. The codeword (x|x + y) ∈ K(C) if and only if 2(x|x + y) ∗ (u|u) ∈ C and
2(x|x + y) ∗ (0|v) ∈ C for all u, v in G1,G2, respectively. That means (2x ∗ u|2x ∗
u + 2y ∗ u) ∈ C, ∀u ∈ G1, and (0|2x ∗ v + 2y ∗ v) ∈ C, ∀v ∈ G2. That is, x ∈ K(C1)
and 2y ∗ u ∈ C2, ∀u ∈ G1, and 2x ∗ v + 2y ∗ v ∈ C2, ∀v ∈ G2. Note that since
C2 ⊆ C1, the condition 2y ∗ u ∈ C2 ∀u ∈ G1 implies that 2y ∗ v ∈ C2 ∀v ∈ G2.
Therefore, 2x ∗ v + 2y ∗ v ∈ C2 ∀v ∈ G2 is simplified to 2x ∗ v ∈ C2 ∀v ∈ G2. ��

Note that if 2y ∗u ∈ C2 for all u ∈ G1, then y ∈ K(C2). Furthermore, x could not
belong to C2, but if x ∈ C2 then x ∈ K(C2).

Proposition 9. For all m ≥ 1 and r ∈ {0, 1, 2, m − 1, m}, the corresponding
Z4-linear code of RM0(r, m) is a binary linear code.

Proof. For r = 0, r = m − 1 and r = m, the corresponding Z4-linear codes of
RM0(r, m) are the repetition, the even weight and the universe codes, respec-
tively, which are binary linear codes. For r = 1, the corresponding Z4-linear code
of RM0(r, m) is the binary linear Hadamard code [16],[17].

Finally, for r = 2, the RM0(2, m) code is constructed as PC(RM0(2, m −
1),RM0(1, m − 1)). We proceed by induction on m. For m = 2, the code
RM0(2, 2) is the universe code. For m ≥ 3, we can assume that φ(RM0(2, m−
1)) and φ(RM0(1, m − 1)) are binary linear codes. The generator matrix of
RM0(2, m) only have vectors of the form (x|x) and (0|y) for all x ∈ G0(2,m−1),
y ∈ G0(1,m−1). By Lemmas 6 and 8, since x ∈ K(RM0(2, m− 1)) and the only
vector of order four in the generator matrix of RM0(1, m− 1)) is 1, the vector
(x|x) ∈ K(RM0(2, m)), ∀x ∈ G0(2,m−1). By Lemmas 6, 8 and the same argu-
ment, the vector (0|y) ∈ K(RM0(2, m)), ∀y ∈ G0(1,m−1). Thus all the vectors in
the generator matrix of RM0(2, m) belong to the kernel of RM0(2, m). There-
fore, the corresponding Z4-linear code of RM0(2, m) is a binary linear code. ��

Let A and B be two matrices. If B is a submatrix of A, then we will use A\B to
denote the matrix A without the rows of B. Recall that we will also use A and
B to denote the set of row vectors of A and B, respectively. Moreover, if B ⊆ A
then we will use A \B to denote the set of row vectors in A which are not in B.

Proposition 10. For all m ≥ 4 and r ∈ {2, . . . , m−2}, the kernel ofRM0(r, m)

of type 2γ4δ is the quaternary linear code generated by

⎛⎝ Gγ

2Gδ

Wm−1

⎞⎠, where Gγ and

Gδ are the γ and δ generators of order two and four of RM0(r, m), respectively.

Proof. For m = 4, there is only the code RM0(2, 4). By Proposition 9, the cor-
responding Z4-linear code of RM0(2, m) is a binary linear code. Since Wm−1 ⊆
RM0(2, m) and δ = m, the preposition is true for all the codes RM0(2, m).

Kernel Dimension for Some Families 137

For m = 5, the code RM0(3, 5) is the first one under the Gray map, the
binary code is nonlinear. In this case, we can compute its kernel and see that

can be generated by

⎛⎝ Gγ

2Gδ

W 4

⎞⎠.

By Lemma 7, there is a generator matrix for any RM0(r, m) with r ≥ 2,
which can be written as follows:⎛⎜⎜⎝

Gγ

2Gδ

Gδ \Wm−1

Wm−1

⎞⎟⎟⎠ .

For m > 5, assume that the lemma is true for m − 1. Let C1 = RM0(r, m − 1)
and C2 = RM0(r − 1, m − 1) of types 2γ4δ and 2γ′

4δ′
, respectively. Let C =

RM0(r, m) = PC(C1, C2) be the new code with a generator matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gγ Gγ

2Gδ 2Gδ

Gδ \Wm−2 Gδ \Wm−2

Wm−2 Wm−2

0 Gγ′

0 2Gδ′

0 Gδ′ \Wm−2

0 Wm−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The vectors of order two are always in the kernel. By Lemma 8, the vectors that
are not in the kernels of C1 and C2 can not be in the kernel of C. This excludes
the row vectors in (Gδ \Wm−2 | Gδ \Wm−2) and (0 | Gδ′ \Wm−2), and their linear
combinations with the kernel of C. Since Wm−2 ⊆ K(C1) and Wm−2 ⊆ K(C2),
the row vectors of the form (Wm−2 | Wm−2) are in K(C). For the vectors of
the form (0 | Wm−2), we have two cases. By Lemmas 6 and 8, (0|1) ∈ K(C).
On the other hand, the vectors wi ∈ Wm−2, 2 ≤ i ≤ m− 1, have weight 2m−3.
By Proposition 5, wmin(C) = wmin(C2) and 2wmin(C) = wmin(C1). For every
vector y in the space generated by Wm−2 \ 1, there is another vector of order
four, u ∈ G1, such that the weight of 2y ∗u is less than wmin(C). Thus y /∈ K(C).
Finally, (Wm−2 | Wm−2) ∪ (0|1) = Wm−1. ��

Note that the case r = 2 is included in both Propositions 9 and 10. That is, the
corresponding Z4-linear code of any RM0(2, m) is always a binary linear code
and RM0(2, m) can be generated by a matrix of the form (2).

Corollary 11. For all m ≥ 1 and 0 ≤ r ≤ m, the dimension of the kernel of
RM0(r, m) of type 2γ4δ is

k0(r,m) =
{

γ + 2δ if r ∈ {0, 1, m− 1, m}
γ + δ + m if r ∈ {2, . . . , m− 2}.

138 J. Pernas, J. Pujol, and M. Villanueva

Proof. Straightforward from Propositions 9 and 10. ��

Note that, the kernel, as a binary linear code, is generated by⎛⎝ φ(Gγ)
φ(2Gδ)

φ(Wm−1)

⎞⎠ ,

where all these vectors are linear independent over Zm
2 .

4 Kernel Dimensions for the RMs Families

In this section, the general case when s > 0 is studied. We will establish the di-
mension of the kernel for any quaternary linear Reed-Muller code in these RMs

families. This invariant, the kernel dimension, will help us to the classification
of these codes.

As we have shown in Subsection 2.2, these quaternary linear Reed-Muller
codes RMs(r, m) can be obtained using the Plotkin construction, except when
m is odd and s = m−1

2 . In this case, they are obtained using the BQ-Plotkin
construction. Note that some of these codes could be constructed using any of
these two constructions.

Theorem 12. For all m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤
m−1
2 �, the dimension

of the kernel of RMs(r, m) of type 2γ4δ is

1. ks(0,m) = 1, ks(m−1,m) = 2m − 1, ks(m,m) = 2m.
2. If s = 0,

k0(r,m) =
{

γ + 2δ if r = 1
γ + δ + m if r ∈ {2, . . . , m− 2}.

3. If s = 1, k1(r,m) = γ + δ + 2 for all r ∈ {1, 2, . . . , m− 2}.
4. If s ≥ 2, ks(r,m) = γ + δ + 1 for all r ∈ {1, 2, . . . , m − 2}, except the case

k2(2,5) = γ + δ + 2 = 11.

Proof. It is straightforward to see that ks(0,m) = 1, ks(m−1,m) = 2m − 1, and
ks(m,m) = 2m, because φ(RMs(0, m)), φ(RMs(m−1, m)), and φ(RMs(m, m))
are the repetition, the even weight, and the universe codes, respectively.

The case s = 0 is proved in Corollary 11. The cases s = 1 and s ≥ 2 can be
proved using similar arguments to that for the case s = 0. When s = 1 there are
only two generators of order four in the kernel of RM1(r, m), wm−1

1 = 1 and
wm−1

2 . When s ≥ 2 there is only one generator of order four wm−1
1 = 1 in the

kernel of RMs(r, m), except for the code RM2(2, 5). Since φ(RM2(2, 5)) and
φ(RM2(1, 5)) are equivalent k2(2,5) = 11 = γ + δ + 2. ��

Note that Theorem 12 includes the previous results about the kernel dimension
for Z4-linear Hadamard and Z4-linear extended 1-perfect codes [6],[13],[15] or
(1). Table 1 shows the type 2γ4δ and the dimension of the kernel of all these
RMs(r, m) codes for m ≤ 7.

Kernel Dimension for Some Families 139

Table 1. Type 2γ4δ and kernel dimension ks(r,m) for all RMs(r,m) codes with m ≤ 7,
showing them in the form (γ, δ) ks(r,m)

m�
��s

r
0 1 2 3 4 5 6 7

1 0 (1,0) 1 (0,1) 2
2 0 (1,0) 1 (1,1) 3 (0,2) 4

3
0 (1,0) 1 (2,1) 4 (1,3) 7 (0,4) 8
1 (1,0) 1 (0,2) 4 (1,3) 7 (0,4) 8

4
0 (1,0) 1 (3,1) 5 (3,4) 11 (1,7) 15 (0,8) 16
1 (1,0) 1 (1,2) 5 (1,5) 8 (1,7) 15 (0,8) 16

5
0 (1,0) 1 (4,1) 6 (6,5) 16 (4,11) 20 (1,15) 31 (0,16) 32
1 (1,0) 1 (2,2) 6 (2,7) 11 (2,12) 16 (1,15) 31 (0,16) 32
2 (1,0) 1 (0,3) 4 (2,7) 11 (0,13) 14 (1,15) 31 (0,16) 32

6
0 (1,0) 1 (5,1) 7 (10,6) 22 (10,16) 32 (5,26) 37 (1,31) 63 (0,32) 64
1 (1,0) 1 (3,2) 7 (4,9) 15 (4,19) 25 (3,27) 32 (1,31) 63 (0,32) 64
2 (1,0) 1 (1,3) 5 (2,10) 13 (2,20) 23 (1,28) 30 (1,31) 63 (0,32) 64

7

0 (1,0) 1 (6,1) 8 (15,7) 29 (20,22) 49 (15,42) 64 (6,57) 70 (1,63) 127 (0,64) 128
1 (1,0) 1 (4,2) 8 (7,11) 20 (8,28) 38 (7,46) 55 (4,58) 64 (1,63) 127 (0,64) 128
2 (1,0) 1 (2,3) 6 (3,13) 17 (4,30) 35 (3,48) 52 (2,59) 62 (1,63) 127 (0,64) 128
3 (1,0) 1 (0,4) 5 (3,13) 17 (0,32) 33 (3,48) 52 (0,60) 61 (1,63) 127 (0,64) 128

The next theorem proves that there are at least
m−1
2 � nonequivalent binary

codes with the same parameters as the code RM(r, m).

Lemma 13. Given two codes RMs(r, m) and RMs′(r, m) of type 2γ4δ and
2γ′

4δ′
respectively, such that s < s′, we have that γ + δ > γ′ + δ′, except one

case: if m is odd, r even, s = m−3
2 , and s′ = m−1

2 , then γ + δ = γ′ + δ′.

Proof. When RMs(r, m) and RMs′(r, m) are obtained using the Plotkin con-
struction, it is easy to see that γ + δ > γ′ + δ′.

If m is odd and s′ = m−1
2 , the code RMs′(r, m) is obtained using the BQ-

Plotkin construction. Without loss of generality, we can assume that s = s′ − 1
and RMs(r, m) is obtained using the Plotkin construction. Using the recursive
definition of γ = γs(r,m), δ = δs(r,m), γ′ = γs′(r,m), and δ = δs′(r,m), we have that
γs(r,m) + δs(r,m)− γs′(r,m)− δs′(r,m) = γs′−1(r−1,m−2). Hence, if γs′−1(r−1,m−2) �=
0 then γs(r,m) + δs(r,m) > γs′(r,m) + δs′(r,m), and if γs′−1(r−1,m−2) = 0 then
γs(r,m) + δs(r,m) = γs′(r,m) + δs′(r,m), which is when r is even. ��

Theorem 14. For all m ≥ 4 and r = 1, there are at least
m−1
2 � nonequivalent

binary codes with the same parameters as the code RM(1, m).
For all m ≥ 4 and 2 ≤ r ≤ m − 2, there are at least
m+1

2 � nonequivalent
binary codes with the same parameters as the code RM(r, m), except when m
is odd, and r is even. In this case, there are at least m−1

2 nonequivalent binary
codes with the same parameters as the code RM(r, m).

140 J. Pernas, J. Pujol, and M. Villanueva

Proof. For r = 1, the result was proved in [13]. For 2 ≤ r ≤ m− 2, the proof is
consequence of Theorem 12 and Lemma 13. ��

5 Conclusions

In a recent paper [17], new families of quaternary linear codes, the RMs(r, m)
codes, are constructed in such a way that, after the Gray map, the Z4-linear
codes fulfill the same properties and fundamental characteristics as the binary
linear Reed-Muller codes. In this paper, a structural invariant for binary codes,
the kernel dimension, is used to classify these new families of codes. Using a
recursive construction, we give the generator matrices of the kernel and compute
the exact values of the kernel dimension for all the feasible values of s, r and m.
This invariant allows us to classify all the codes except when m is odd, m ≥ 5,
and r is even. In a further research we will also compute the rank, another
structural invariant for binary codes, and give a complete classification of these
families of codes.

References

1. Bauer, H., Ganter, B., Hergert, F.: Algebraic techniques for nonlinear codes. Com-
binatorica 3, 21–33 (1983)

2. Borges, J., Fernández, C., Phelps, K.T.: Quaternary Reed-Muller codes. IEEE
Trans. Inform. Theory 51(7), 2686–2691 (2005)

3. Borges, J., Fernández-Córdoba, C., Phelps, K.T.: ZRM codes. IEEE Trans. Inform.
Theory 54(1), 380–386 (2008)

4. Pernas, J., Pujol, J., Villanueva, M.: Codes over Z4. A Magma package. Universitat
Autònoma de Barcelona (2008), http://www.ccg.uab.cat

5. Borges, J., Phelps, K.T., Rifà, J., Zinoviev, V.A.: On Z4-linear Preparata-like and
Kerdock-like codes. IEEE Trans. Inform. Theory 49(11), 2834–2843 (2003)

6. Borges, J., Phelps, K.T., Rifà, J.: The rank and kernel of extended 1-perfect Z4-
linear and additive non-Z4-linear codes. IEEE Trans. Inform. Theory 49(8), 2028–
2034 (2003)

7. Cannon, J.J., Bosma, W. (eds.): Handbook of Magma Functions, Edition 2.13,
4350 p. (2006)

8. Fernández-Córdoba, C., Pujol, J., Villanueva, M.: On rank and kernel of Z4-linear
codes. In: Barbero, A. (ed.) ICMCTA 2008. LNCS, vol. 5228, pp. 46–55. Springer,
Heidelberg (2008)

9. Fernández-Córdoba, C., Pujol, J., Villanueva, M.: Z2Z4-linear codes: rank and
kernel. Discrete Applied Mathematics (submitted, 2008) (arXiv:0807.4247)

10. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z4-
linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform.
Theory 40, 301–319 (1994)

11. Hou, X.-D., Lahtonen, J.T., Koponen, S.: The Reed-Muller code R(r,m) is not
Z4-linear for 3 ≤ r ≤ m − 2. IEEE Trans. Inform. Theory 44, 798–799 (1998)

12. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University Press, Cambridge (2003)

http://www.ccg.uab.cat

Kernel Dimension for Some Families 141

13. Krotov, D.S.: Z4-linearHadamard and extended perfect codes. In: International
Workshop on Coding and Cryptography, Paris, France, January 8-12, pp. 329–334
(2001)

14. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Publishing Company, Amsterdam (1977)

15. Phelps, K.T., Rifà, J., Villanueva, M.: On the additive (Z4-linear and non-Z4-
linear) Hadamard codes: rank and kernel. IEEE Trans. Inform. Theory 52(1), 316–
319 (2006)

16. Pujol, J., Rifà, J., Solov’eva, F.I.: Quaternary plotkin constructions and quater-
nary reed-muller codes. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS,
vol. 4851, pp. 148–157. Springer, Heidelberg (2007)

17. Pujol, J., Rifà, J., Solov’eva, F.I.: Construction of Z4-linear Reed-Muller codes.
IEEE Trans. Inform. Theory (to appear, 2008)

18. Solov’eva, F.I.: On Z4-linear codes with parameters of Reed-Muller codes. Problems
of Inform. Trans. 43(1), 26–32 (2007)

19. Wan, Z.-X.: Quaternary codes. World Scientific Publishing Co. Pte. Ltd., Singapore
(1997)

Coding-Based Oblivious Transfer

Kazukuni Kobara1, Kirill Morozov1, and Raphael Overbeck2,�

1 RCIS, AIST
Akihabara Daibiru, room 1102
1-18-13 Sotokanda, Chiyoda-ku

Tokyo 101-0021 Japan
{k-kobara,kirill.morozov}@aist.go.jp

2 EPFL - I&C - ISC - LASEC
Station 14 - Building INF

CH-1015 Lausanne
Switzerland

overbeck@cdc.informatik.tu-darmstadt.de

Abstract. We present protocols for two flavors of oblivious transfer (OT):
the Rabin and 1-out-of-2 OT based on the assumptions related to secu-
rity of the McEliece cryptosystem and two zero-knowledge identification
(ZKID) schemes, Stern’s from Crypto ’93 and Shamir’s from Crypto ’89,
which are based on syndrome decoding and permuted kernels, respectively.
This is a step towards diversifying computational assumptions on which
OT – cryptographic primitive of central importance – can be based.

As a by-product, we expose new interesting applications for both
ZKID schemes: Stern’s can be used for proving correctness of McEliece
encryption, while Shamir’s – for proving that some matrix represents a
permuted subcode of a given code.

Unfortunately, it turned out to be difficult to reduce the sender’s secu-
rity of both schemes to a hard problem, although the intuition suggests
a successful attack may allow to solve some long-standing problems in
coding theory.

Keywords: Oblivious transfer, coding-based cryptography, McEliece
cryptosystem, permuted kernel problem.

1 Introduction

Oblivious transfer (OT) [10, 23, 28] is an important cryptographic primitive
which implies secure two-party computation [12, 16]. OT guarantees a trans-
mission from a sender to a receiver with partial erasure of the input, which can
happen in two manners. When the whole input is erased with some fixed prob-
ability (independently of the player’s control), we have an analog of the erasure
channel, or Rabin OT. When the sender has two inputs and one of them is
received (while the other is erased) according to the receiver’s choice (and the
� Part of this work was done at the Cryptography and Computer Algebra Group,

TU-Darmstadt, Germany. Part of this work was funded by the DFG.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 142–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coding-Based Oblivious Transfer 143

sender does not learn this choice), we have 1-out-of-2 OT. In fact, these two
flavors of OT were shown to be equivalent [7].

A number of complexity assumptions were used to construct OT: generic, e.g.,
enhanced trapdoor permutations [10, 11, 14], and specific, e.g., factoring [23],
Diffie-Hellman [1, 3, 20], N’th or Quadratic Residuosity and Extended Riemann
Hypothesis [15].

Our contribution. We present two coding-based computationally secure con-
structions. The Rabin OT protocol is based on the McEliece encryption [19]
where a public-key is constructed from the permuted concatenation of the stan-
dard McEliece public key and a random matrix. The receiver will construct this
public key and prove its correctness using the Shamir’s zero-knowledge iden-
tification (ZKID) scheme [25] based on permuted kernel problem (PKP). The
sender will prove that the input is encrypted using the error vector of the ap-
propriate weight using the Stern’s ZKID scheme [26] based on general syndrome
decoding.

We note that these new applications of the two ZKID schemes can be of in-
dependent interest in coding-based protocols. For instance, combining McEliece
encryption with Stern’s ZKID yields the verifiable McEliece encryption (for ver-
ifiable encryption and its applications see, e.g., [4]).

Unfortunately, in the above protocol, even the honest-but-curious receiver can
reduce the probability of erasure. We show that this can be fixed by applying
the reduction [7]. In fact, we show that this reduction can be used for such a
weaker version of Rabin OT. However, the whole construction becomes involved
and we end up implementing 1-out-of-2 OT on the way. Hence, we present a
generalization of the above protocol which implements 1-out-of-2 OT using the
presented techniques.

The security of both protocols is based on the assumption related to security
of the McEliece PKC – indistinguishability of permuted generating matrix of a
Goppa code from random and bounded distance decoding – and, in addition, the
assumptions underlying the used ZKID schemes. We also employ commitment
schemes.

Both constructions share the same shortcoming: it turned out to be difficult
to reduce the sender’s security to a hard decoding problem. Shortly speaking,
the intuition suggests that a successful attack would require either efficient list
decoding algorithm for Goppa codes, or extending those codes with random
columns while still retaining a good error correcting capability.

Related Work. The work [9] presents 1-out-of-2 Bit OT protocol based exclu-
sively on the McEliece PKC related assumptions. Its efficiency is comparable
to our 1-out-of-2 String OT protocol, however it provides a stronger security
guarantee for the receiver: it is unconditional as compared to computational in
our case.

Organization. In Section 2, we briefly introduce our security definitions, as-
sumptions, and the main ingredients for our constructions. The reduction from

144 K. Kobara, K. Morozov, and R. Overbeck

a weak version of Rabin OT to the original Rabin OT is presented in Section 3.
Section 4 introduces our Rabin OT construction, while our 1-out-of-2 OT pro-
tocol is sketched in Section 5.

2 Preliminaries

In our definitions, the players are bounded to run in probabilistic polynomial
time in a security parameter n.

For vectors, summation is component-wise in the corresponding field, unless
stated otherwise. Computational indistinguishability is denoted by “ c=”.

2.1 Security Definitions

Informally, Rabin (string) oblivious transfer is the trusted erasure channel from
the sender Sen to the receiver Rec with fixed erasure probability QH = 1 − P
and a bit-vector b ∈ Fk

2 as input. The malicious sender S̃en has no knowledge
on the output, while the malicious receiver R̃ec cannot learn the erased input.

We denote by a V iew of the player all the messages that he sent and received
during the protocol as well as his local randomness. Let the binary random
variable E (which indicates the fact of erasure and whose outcome is available to
Rec) is equal to 0 with probability P . For the sake of simplicity, in the expressions
for views, we omit most of the variables which are the same on both sides of
equality.

Definition 2.1. A two-party protocol is said to securely implement Rabin OT,
if Sen gets as input a k-bit vector m and the following conditions are satisfied:

– Completeness: When Sen and Rec follow the protocol, if E = 0, then Rec
outputs m, otherwise he outputs “erasure”.

– Sender’s security: ∀m′ �= m,m′ ∈ Fk
2 :

V iewR̃ec(m|E = 1) c= V iewR̃ec(m
′|E = 1).

– Receiver’s security: V iewS̃en(E = 0) c= V iewS̃en(E = 1).

The definition of γ-gap Rabin OT is analogous to the above, but R̃ec can decrease
the erasure probability from his point of view by γ. This probability is denoted
by Q = 1−P − γ. Let the binary random variable Ẽ which indicates the fact of
erasure (Ẽ = 1) or not for R̃ec be equal to 1 with probability Q.

Definition 2.2. A two-party protocol is said to securely implement γ-gap Rabin
OT, if Definition 2.1 holds except that the sender’s security condition is replaced
with:

∀m′ �= m,m′ ∈ Fk
2 : V iewR̃ec(m|Ẽ = 1) c= V iewR̃ec(m

′|Ẽ = 1).

In the other flavor of oblivious transfer, 1-out-of-2 String OT, Sen inputs two
a-bit vectors b0,b1. Rec obtains one of them according to his choice c ∈ {0, 1}.
S̃en is unable to learn c, while R̃ec remains ignorant about b1−c.

Coding-Based Oblivious Transfer 145

2.2 Assumptions

The security of all schemes we present in this paper is based on the assumption,
that the following problems are hard in the average case (i.e. all but a negligible
fraction of random instances of these problems are infeasible to solve):

Definition 2.3. In the following let all matrices and vectors be over Fq.

(i) Given a k×n matrix, decide if its row-space is within a Goppa code or was
generated at random. (Goppa-code-distinguishing Problem)

(ii) Given a (random) [n, k] code generated by the matrix Gpub, a word c and
an integer w, find e of Hamming weight at most w such that c = mGpub+e
for some m. (General Syndrome Decoding)

(iii) Given a (random) [n, k, d] code generated by the matrix Gpub, find a code-
word of weight ≤ w in that code (Finding low weight words).

(iv) Given a random [n, k] code and a random permuted subcode of dimension
l < k, find the permutation. (Permuted Kernel Problem)

Only Problems (ii) – (iv) are known to be NP-hard in the general case [25, 26].
The coding theoretic problems (ii) and (iii) seem to be the hardest, if w is close
to the Gilbert-Varshamov (GV) bound (see, e.g. [18, Ch. 17, Thm. 30]).

2.3 Tools

We shortly recall the main ingredients of our scheme: the McEliece PKC, the
zero-knowledge identification protocols (ZKID) by Stern and Shamir connected
to coding theory, and Crépeaus’s protocol for 1-out-of-2 OT based on Rabin OT.

McEliece’s public key encryption scheme [19] works as follows: Upon input
of the system parameters m, t, the key generation algorithm outputs the secret
key consisting of three matrices: (S, G, P), where G ∈ Fk×n

2 is a canonical genera-
tor matrix of an [n, k ≥ n−mt, 2t+ 1] binary irreducible Goppa code, S ∈ Fk×k

2
is non-singular and P ∈ Fn×n

2 is a permutation matrix. The corresponding pub-
lic key is (Gpub = SGP, t). To encrypt a message m ∈ Fk

2 the sender chooses a
random binary vector e of length n and Hamming weight t and computes the
ciphertext c = mGpub + e. The secret key holder now can recover m from c
using his secret key.

For properly chosen parameters, the McEliece PKC is secure [5] and there
exist conversions to obtain CCA2 security [17]. For such variants, or if only
random strings are encrypted, Gpub can be chosen to be systematic (i.e. with the
k-dimensional identity matrix Idk in the first k columns), as we will do in the
following. This reduces space needed to store Gpub.

The size of the ciphertexts can be reduced to n−k if the message is represented
by e. This is known as the Niederreiter PKC, compare [24]. In the latter case (e.g.
if a hash of e serves as a random seed or key for a symmetric encryption scheme)

146 K. Kobara, K. Morozov, and R. Overbeck

it is sufficient to send the syndrome e(Gpub)⊥ as ciphertext, where (Gpub)⊥ refers
to the systematic check matrix of Gpub.

Stern’s ZKID [26] has a check matrix H ∈ Fn×(n−k)
q and an integer w as

system parameters. An user’s identity s is computed from the user’s secret, a
vector e ∈ Fn

q of Hamming weight w: s = eH. By Stern’s 3-round zero-knowledge
protocol, the secret key holder can prove his knowledge of e using two blending
factors: a permutation and a random vector. However, a dishonest prover not
knowing e can cheat the verifier in the protocol with probability 2/3. Thus, the
protocol has to be run several times to detect cheating provers. Computing e from
s is solving Problem (ii) from Definition 2.3. The communication cost is about
n(1 + log2(n)) log2(q) plus three times the size of the employed commitments
(e.g. a hash function).

Shamir’s Permuted Kernel ZKID [25] works quite similarly, i.e. it has a
check matrix H ∈ Fn×(n−k)

q and an integer l as system parameters. (Shamir
proposed to use l = 1 and q to be a large prime. However, taking q small and
l < (n − k) works as well [27].) The user’s identity K ∈ Fl×n

q is computed from
the user’s secret, a permutation Π as follows: K is taken at random from the
right kernel of ΠH. In the following we can view K as an n-vector over Fql . By
Shamir’s 5-round zero-knowledge protocol, the secret key holder can prove his
knowledge of Π using two blending factors: a permutation and a random n-vector
over Fql . However, a dishonest prover not knowing Π can cheat the verifier in the
protocol with probability (ql + 1)/(2 · ql). Thus, the protocol has to be repeated
several times to detect cheating provers. Computing Π from K is solving Problem
(iv) from Definition 2.3. The communication cost is about n(l + log2(n)) log2(q)
plus two times the size of the commitments. See [22] for the practical security
analysis.

Crépeau’s protocol [7] allows us to build an 1-out-of-2 OT from a Rabin OT
and a hash function h: In a first stage, N random messages ri are sent to the
receiver by a Rabin OT with erasure (receiving) probability Q (P). Now, K
is chosen such that K < PN = (1 − Q)N < 2K < N , i.e. the receiver ob-
tains at least K and at most 2K − 1 of the random messages ri. Then, the
receiver sends two disjoint sets I,J ⊆ {1, . . . , N} of K indices to the sender,
such that one of the sets contains only indices of not erased messages ri. For
the 1-out-of-2 OT, the messages m0,m1 are encrypted as c0 = m0 + h((ri)i∈I)
and c1 = m1 + h((rj)j∈J). Since the receiver knows either the set (ri)i∈I or
(rj)j∈J , he obtains exactly one of the messages from c0 and c1. Crépeau’s pro-
tocol fails with some probability which is negligible in N and can easily be
computed.

Commitment scheme. This protocol allows a committer to transmit an evi-
dence (called commitment) of a message to the verifier with possibility to reveal
the message later. The committer cannot learn the message before revealing,

Coding-Based Oblivious Transfer 147

while the verifier cannot change his mind by opening a different message. In this
work, we use a commitment functionality abstracting from its implementation.
For details on commitment schemes, see [8] and the references therein.

3 Reducing the Gap in Rabin OT

We show that the Crépeau’s protocol can be used to reduce the Gap Rabin OT
to the 1-out-of-2 OT and thus to the original Rabin OT.

Theorem 3.1. γ-Gap Rabin OT with γ = QH−QA is equivalent to Rabin OT,
if for some K ′ > 0: K ′ < 1−QH ≤ 1−QA < 2K ′ < 1.

Proof (Sketch). Consider the Crépeau’s protocol as described in the previous
section and take K = K ′N . It is easy to check that this protocol works, i.e.,
the sender is very likely to find enough received messages for one set, while the
other set is very likely to contain at least one erasure.

4 Rabin Oblivious Transfer

Our scheme implementing Rabin OT with erasure probability 1 − P consists
of two phases: initialization and transmission. The first one is used for key
generation, where a Goppa code is concatenated with a random code and used
as substitute for the secret code in the McEliece PKC, see Algorithm 4.1.
To ensure correct generation of the public key, we use a trusted third party
(TTP) in Algorithm 4.1, which can be omitted as we show in Section 4.2. In the

Algorithm 4.1. Key generation
Input: Security parameters m, t, t′, l ∈ N.
Receiver: Set n = 2m, k = 2m−mt. Generate a McEliece PKC key pair with security
parameters m, t. Let (S, G, P) be the secret key with public key (Gpub = SGP, t).
Send Gpub to the TTP.
TTP: Generate a random matrix G′ ∈ Fk×l

2 and a (n+l)×(n+l) random permutation
matrix P′. Publish the systematic matrix Opub generating the same [n+ l, k] code as[

Gpub G′]P′.

transmission phase, see Algorithm 4.2, en- and decryption work like in the
McEliece PKC. The difference lies in the modified public key, which ensures,
that the receiver cannot decrypt all valid ciphertexts. The time complexity for
Algorithm 4.2 is O(n · k + n ·m · t2) operations [6]. The size of the ciphertexts
is n + l, but as mentioned in Section 2.3, this can be reduced to n + l − k by
encoding the message into the error vector e.

Note that if Opub is re-used in the different instances of Algorithm 4.2, a
security problem might arise when composing such instances, see discussion in
Appendix A.2. For the sake of simplicity of our proofs, we henceforth assume
that Opub is generated each time anew.

148 K. Kobara, K. Morozov, and R. Overbeck

Algorithm 4.2. Transmission
Input: The security parameters m, l, t′ and a k-bit message m.

Encryption:
Obtain the receiver’s public key Opub.
Generate a random vector e of weight t′ and length 2m + l.
Compute the ciphertext c = mOpub + e.
Send c to the receiver.
Following Stern’s protocol with system parameters Opub and t′, send a zero knowl-
edge proof of knowledge Proof for the public key c and secret key e to the receiver.

Decryption:
Verify Proof.
Set (c1, c2) = c(P′)−1, where c1 is an n-bit vector.
Try to apply the error correction algorithm for G to c1P−1 in order to obtain m.
if (previous step fails) or (mOpub + c has weight �= t′) then

return erasure.
else

return m.

4.1 Security Analysis

Next, we show that Algorithm 4.2 is an instance of a γ-Gap Rabin OT according
to Definition 2.2.

Correctness. Observe that if parameters are chosen carefully and every party
follows the protocol, Algorithm 4.2 works correctly. Let us assume that l = n
and t′ = 2t + 1. Let (e1, e2) = e(P′)−1 = c(P′)−1 + m

[
Gpub G′], where e1 is an

n-bit vector. Then, iff e1 has weight ≤ t, the decryption procedure returns the
correct message m. Else an erasure occurs or the receiver obtains a false message
m′ �= m. However, the latter case is unlikely to appear, since then, the weight
of m′Opub + c is t′. Thus, m′Opub + c + mOpub + c has weight ≤ 2t′ = 4t + 2.
It is easy to check that, for the reasonable parameters (m > 10 and appropriate
t), the codeword (m + m′)Opub has weight below the Gilbert-Varshamov (GV)
bound for Opub, which is infeasible to find, even if such a codeword exists.

Since every choice of t′ below half of the GV-bound of Opub leads to a correct
scheme, the parameters may be chosen, such that the probability P of obtaining
the message m varies. We can compute P as the fraction of error vectors with
no more than t entries on the positions of Gpub:

P :=
t∑

i=0

(
n
i

)(
l

t′−i

)(
n+l
t′

) = 1−
t′∑

i=t+1

(
n
i

)(
l

t′−i

)(
n+l
t′

)︸ ︷︷ ︸
=:QH

. (1)

Thus, for instance, if n = l and t′ = 2t + 1, GV bound for Opub, the scheme
works correctly and we have P = QH = 1/2.

Coding-Based Oblivious Transfer 149

Gap. In fact, Algorithm 4.2 implements the γ-Gap Rabin OT for some γ > 0,
since even an honest-but-curious receiver has the possibility to raise its probabil-
ity of receiving the message m. He might choose to guess a part of the error vector
or try to apply a general decoding algorithm to the erroneous word c2 of the
code G′. These attacks are reflected in the following formula for the probability
QA of an erasure for a dishonest receiver spending A operations on decryption:

QA =
∑t1

i=t0

(n
i)(l

t′−i)
(n+l

t′) ,

where t0 > t + 1, t1 < t′ (compare (1)) and the following conditions hold:

(i) Solving General Syndrome Decoding problem for c and Opub takes more
than A operations. Note that A can be computed taking into account the
(best known) attack by Canteaut and Chabaud [5] using the lower bound
from [24]:

A ≥ 2−t′ log2(1−k/(n+l)). (2)

(ii) General Syndrome Decoding problem for c2 = mG′ + e2 and G′ cannot be
solved in A operations if e2 has weight ≥ t′ − t1.

(iii) If the weight w of e1 = c1 + mGpub is larger than t0, the receiver cannot
guess a sufficiently large subset of the support of e1 to apply the decoding
algorithm for Goppa codes. This is(

n
w−t

)(
w

w−t

)m3t2 ≥ A, (3)

since each decoding attempt takes m3t2 operations [6] and there are
(

w
w−t

)
correct guesses.

To the best of our knowledge there exist neither codes with better error correction
ratio than binary irreducible Goppa codes nor efficient list decoding algorithm
for binary irreducible Goppa codes [13]. Thus, if wt(e1) > t0, the receiver either
has to guess part of the error or is forced to use a general decoding algorithm.

We conclude that the dishonest receiver can achieve Q = 1 only if general
decoding is easy. The gap is computed as γ = QH−QA. Given A, the parameters
of Algorithm 4.2 must be chosen according to (2). Condition (ii) allows us to
compute t1 by substituting in (2): t′ and l + n with t′ − t1 and n, respectively.
Finally, t0 is equal to minimal w, satisfying (3). In Appendix A.1, we present
the numerical computations of QH and QA for A = {38, 70} and some proposed
parameter sets.

Sender’s Security. It appeared to be difficult to show a reduction to a hard
problem. The general intuition behind the sender’s security of our scheme is as
follows. Assume that there exists a malicious receiver algorithm R which can
recover all the messages in the case of erasure. Then, R must efficiently perform
either of the following tasks: 1) Correct substantially more than t errors in a
(n, k ≥ n −mt) Goppa code; 2) Extend a Goppa code in such a way that the

150 K. Kobara, K. Morozov, and R. Overbeck

extended code efficiently corrects as many errors as the Goppa code of the same
size.

As there is no known polynomial algorithm for either of these problems, we
believe that the sender’s security can be achieved in principle.

Receiver’s Security
Proof assures that e is of weight t′. In other words, the dishonest sender cannot
influent P by playing with the error vector’s weight. His ability to do it would
contradict to security of Stern’s ZKID.

Remark 4.1. We note that Stern’s ZKID can be used for proving the validity of
the McEliece encryption in the same way as it is used for the OT transmission in
Algorithm 4.2. This yields a verifiable variant of McEliece encryption. Verifiable
encryption has numerous applications in cryptographic protocol theory (see [4]).
We leave a formal treatment of this subject for the separate paper.

Theorem 4.2. The Sender S who can distinguish V iewS(m|E = 0) and
V iewS(m|E = 1) can distinguish a Goppa code from a random matrix.

Proof (Sketch)
The proof goes in two parts: First, we show that a sender S able to efficiently
detect erasures (with probability 1) can distinguish the Goppa part of Opub from
the random part. Second, we build an oracle (in a straight forward way) which
distinguishes a Goppa code from a random code using S. For simplicity of our
presentation, we take l = n and t′ = 2t + 1, however our proof generalizes to all
other parameter sets.1

Note, that in the case of erasure, the probability pi that for a position i of
Gpub, ei = 1 is at least (t + 1)/n, while for a position j of G′ the probability
pj that ej = 1 is at most t/l. By heuristics, we can construct a distinguisher
D which can tell the positions of Gpub apart from the ones in G′. This takes
O(running-time(S) · n2) steps since |pi − pj | ≥ 1/n. This approach only fails if
pi ≈ pj , which we can fix by guessing some positions of Gpub. See Appendix A.3
for details.

Now, given two matrices G1 and G2, where one is a Goppa code, we can tell,
which one is the Goppa code, by querying D with Opub = [G1 | G2] for the Goppa
part of Opub. ��

4.2 Omitting Trusted Third Party

In a fully secure scheme, the key generation is performed by the receiver and
its correctness is verified by the sender using Shamir’s PKP ZKID [25] (see
Section 2). The basic idea is that the receiver computes the public key Opub,
while the sender provides its random part G′ key and checks correctness by
Shamir’s ZKID. The key generation protocol is summarized in Algorithm 4.3.

The last step of Algorithm 4.3 requires some additional explanation: After
the second last step, the sender knows a k′ × n submatrix K of

[
Gpub G′] and

1 Here we refer to the parameter sets which provide for secure McEliece encryption.

Coding-Based Oblivious Transfer 151

Algorithm 4.3. Public Key Generation Without TTP
Input: Security parameters same as in Algorithm 4.1 and k′ < 2m − mt ∈ N.
Output: The public key (Opub, t′).

Receiver: Generate the same public key (Gpub, t) as in Algorithm 4.1.
Choose a (n + l) × (n + l) random permutation matrix P′.
Commit to the rows of Gpub (one by one, k commitments in total).
Sender: Generate a random matrix G′ ∈ Fk×l

2 and send it to the receiver.
Receiver: Publish the systematic matrix Opub generating the same [n + l, k] code
as
[
Gpub G′]P′.

Sender: Choose a random subset K′ of cardinality k′ from {1, . . . , k}.
Ask the receiver to reveal the commitments for K′.
Compute the rows of

[
Gpub G′] with indices in K′.

Receiver: Use Shamir’s ZKID to prove to the sender, that there is a permutation,
such that the rows of

[
Gpub G′] with indices in K′ are simultaneously in the code

generated by Opub.

can compute the n + l − k dimensional kernel of Opub given by a matrix H.
Now we can take H and k′ as system parameters for Shamir’s Permuted Kernel
ZKID. If the receiver is honest and has followed the protocol, he knows the secret
permutation Π = P′ corresponding to the user’s identity K, i.e. a permutation
such that K · Π · H = 0. Thus, the honest receiver can employ Shamir’s ZKID
to convince the sender by a zero-knowledge proof that he followed the protocol,
while the dishonest receiver will be revealed.

Note that G′ can be generated using a pseudorandom generator. In this case,
only a seed to the generator needs to be transmitted, hereby communication cost
can be reduced.

5 1-out-of-2 String Oblivious Transfer

As a generalization of the previous scheme, we can construct a substantially
more efficient protocol for 1-out-of-2 String OT. Unfortunately, this construction
inherits the drawback of the previous scheme – we are unable to formally prove
its sender’s security. In fact, the sender’s security proof would be a generalization
of that of our Rabin OT scheme.

In this section, we briefly sketch this 1-out-of-2 String OT scheme and its
security intuition, without giving formal proofs.

We assume the players’ inputs to the protocol to be random since there exists
a reduction by Beaver [2] which allows to convert such randomized OT into OT
with actual inputs. Let the following be the security parameters: the matrix
Q ∈ Fk×n

2 chosen uniformly at random, and G ∈ Fk×n
2 , as before, be a canonical

generator matrix of an [n, k ≥ n − mt, 2t + 1] binary irreducible Goppa code.
Encryption is done using a variant of the McEliece PKC, we assume that the
corresponding inputs’ length is whatever prescribed by the encryption algorithm,
denoted a bits for certainty.

Our 1-out-of-2 String OT protocols is summarized in Algorithm 5.1.

152 K. Kobara, K. Morozov, and R. Overbeck

Algorithm 5.1. 1-out-of-2 String OT
Input: Security parameters: m, k, k′, t, G, Q

Sender: b0, b1 ∈ Fa
2 ; Receiver: c ∈ {0, 1}

Output: Sender: none; Receiver: bc

Receiver: Generate random permutation matrices P′, P′′ ∈ Fn×n
2 and a random

matrix of rank k′: S′ ∈ Fk′×k
2 . Set Cc = S′GP′, C1−c = S′QP′′.

Send [C0|C1] to the receiver.
Prove using Shamir’s ZKID that [C0|C1] is a permuted subcode of [G|Q].
Sender: Reject if the proof fails, otherwise
For i = 0, 1: Encrypt bi as follows: biCi + ei, where ei is random vector of weight t,
and send the encryption.
Receiver: Decrypt and output bc.

Note that the communication cost of this protocol can be substantially re-
duced, if only the non-systematic parts of the codes are dealt with. This mod-
ification will also require using the IND-CCA2 conversion for encryption [17].
Also, Q can be computed using a pseudorandom generator such that only its
seed will be obtained by coin flipping.

Intuition. We provide only a sketch of the security analysis.

Correctness. If both players follow the protocol, then the receiver is not rejected
by the sender and is able to decode Cc which is a subcode of G. Hence, the
decoding algorithm of G can be used.

Sender’s Security. Assume that the receiver is honest-but-curious, i.e., he tries
to compute both inputs, but still follows the protocol. In order to compute
b1−c, he must decode a subcode of the random code, i.e., solve Problem (ii) of
Definition 2.3.

Now, suppose that the IND-CPA version of the McEliece PKC [21] is used
for encryption, then the input b1−c which is encrypted on the subcode of Q is
indistinguishable from random according [21, Lemma 3].

If we use only non-systematic parts of the codes, then we must employ the
IND-CCA2 conversion [17] since the “message” part of the encryption will be
sent in open in this case. Indistinguishability of one of the inputs will follow
in a way similar to the variant above. Note, that the price to pay here is the
additional assumption: the random oracle model, which is not required by the
variant above.

Now, assume that the receiver is fully malicious. The ZK proof will convince
the sender that [Cc|C1−c] is indeed a permutation of [G|Q]. Unfortunately, the
receiver may distribute the columns of G and Q into both Cc and C1−c. Then,
the security proof will boil down to proving the receiver’s inability to efficiently
decode an extended Goppa code. In fact, we will need a generalization of the
security proof for our Rabin OT protocol: here, the receiver does not necessarily
distributes G and Q as “half-to-half” in the subcodes. As it was mentioned in
the previous section, such the proof is not easy to construct.

Coding-Based Oblivious Transfer 153

Receiver’s Security. The malicious sender who learns the receiver’s choice
must either distinguish the subcode of G from that of Q hence solving Problem (i)
or recover the permutations P′, P′′ solving Problem (iv) of Definition 2.3.

Employing Cut-And-Choose. We note, although do not prove it formally,
that in the above algorithm, one can use the cut-and-choose technique instead
of the zero-knowledge proof in order for the sender to check that the keys were
formed correctly. This would remove the above mentioned problem with the
sender’s security proof. However, in this case, our protocol becomes quite similar
to that of [9], since it would use the same machinery to reduce the advantage of
malicious receiver. Therefore, we omit details due to space limitations.

Acknowledgments. The authors would like to thank anonymous reviewers
from Eurocrypt 2008 for their comments. The second author would also like to
thank Yang Cui for his pointer on verifiable encryption.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

3. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(1990)

4. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

5. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in
a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEETIT: IEEE Transactions on Information Theory 44 (1998)

6. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001)

7. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

8. Damg̊ard, I., Nielsen, J.: Commitment schemes and zero-knowledge protocols. Lec-
ture notes, University of Aarhus (February 2008),
http://www.daimi.au.dk/∼ivan/ComZK08.pdf

9. Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.: Oblivious transfer
based on the mcEliece assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS,
vol. 5155, pp. 107–117. Springer, Heidelberg (2008)

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

11. Goldreich, O.: Foundations of Cryptography - Volume 2 (Basic Applications). Cam-
bridge University Press, Cambridge (2004)

http://www.daimi.au.dk/~ivan/ComZK08.pdf

154 K. Kobara, K. Morozov, and R. Overbeck

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229.
ACM, New York (1987)

13. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767
(1999)

14. Haitner, I.: Implementing oblivious transfer using collection of dense trapdoor per-
mutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394–409. Springer,
Heidelberg (2004)

15. Kalai, Y.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005)

16. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM, New York (1988)

17. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992.
Springer, Heidelberg (2001)

18. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correctiong Codes, 7th
edn. North-Holland, Amsterdam (1992)

19. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN
progress report, 42–44, 114–116 (1978)

20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

21. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. In: Charpin, P., Helleseth, T. (eds.) Designs,
Codes and Cryptography, vol. 49(1-3), pp. 289–305. Springer, Heidelberg (2008)

22. Poupard, G.: A realistic security analysis of identification schemes based on com-
binatorial problems. European Transactions on Telecommuncations 8(5), 417–480
(1997)

23. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report,
Aiken Computation Laboratory, Harvard University, Tech. Memo TR-81 (1981)

24. Sendrier, N.: On the security of the McEliece public-key cryptosystem. In: Blaum,
M., Farrell, P.G., van Tilborg, H. (eds.) Proceedings of Workshop honoring Prof.
Bob McEliece on his 60th birthday, pp. 141–163. Kluwer, Dordrecht (2002)

25. Shamir, A.: An efficient identification scheme based on permuted kernels. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg
(1990)

26. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

27. Vaudenay, S.: Cryptanalysis of the Chor–Rivest cryptosystem. J. Cryptology 14(2),
87–100 (2001)

28. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)

Appendix A: Details on Security of Rabin OT

A.1 Examples of Security Parameters

We can achieve reasonable values for P and Q280 , compare Table A.1. In fact,
one can even use the dishonest receiver’s strategy in a positive way, i.e., to raise

Coding-Based Oblivious Transfer 155

Table A.1. Parameter sets for the Rabin OT

Parameters Size Public Key Size Ciphertext Decryption QA

m t t′ l = k(n + l − k) = n + l − k runtime QH A = 238 A = 280

12 200 2t + 1 212 1,377 KBytes 812 Bytes 226 0.5 0.41 0.11
13 402 2t + 13 213 4,974 KBytes 1,677 Bytes 228.5 0.66 0.61 0.36
14 800 2t + 1 214 17,874 KBytes 3,448 Bytes 231 0.5 0.46 0.29

the chance of obtaining the message. The work factor for decryption is then
given by Equation (3). This is useful for protocols like in [7], where we need to
ensure that the receiver gets at least half of the messages, compare Section 3.

Example 1. With the first parameter set from Table A.1 and a receiver spending
up to 235 operations on each decryption, we can obtain a 1-out-of-2 OT by
Crépeau’s construction, which fails with probability less than 2−30 if we choose
N = 180.

A.2 Reaction Attack

Note that if the same public key Opub is used in the different instances of Algo-
rithm 4.2, the dishonest sender can adaptively influent the erasure probability,
as long as he gets feedback whether an erasure occurred or not. Suppose that
an attacker learns that the receiver cannot decode a certain ciphertext. Then,
the sender can choose to modify the corresponding error vector only slightly for
the next encryption. Thus, by statistics, the sender could identify the columns
of Gpub in Opub, which breaks the security of our scheme. Nevertheless, the
sender should be cautious, as the receiver might detect such manipulations by
comparing ciphertexts.

This might get important as feedback may well come from the higher level
protocols (like Crépeau’s protocol), for which oblivious transfer is used as a prim-
itive. However, there are plenty of possible countermeasures against an attack
by feedback. For instance, when the conversion [17] is used for encryption, the
task of tuning the erasure probability is not at all trivial.

A.3 Proof Details for Receiver’s Security

The distinguisher D works as follows. Repeat the following until n2+ε (0 < ε < 1)
erasure views are encountered:

– Generate a view of the sender using some error vector e (distinct each time)
and submit it to S

– Each time S outputs “erasure”, remember on which columns the error loca-
tions of e were.

Note that the expected running time will be n2+ε/Q, where Q is the erasure
probability. Hence, D is efficient.

156 K. Kobara, K. Morozov, and R. Overbeck

Then, consider the “score” of each column. For those of Gpub, the expected
score is at least (t + 1)n1+ε, since at least t + 1 errors are needed to cause an
erasure. Hence, for the columns of G′, the expected score is at most (t′ − t −
1)n2+ε/l as at most t′ − t− 1 errors are left for G′. Now, the standard Chernoff
bound can be applied in order to show that one can distinguish between two
random variables with the above expectations with negligible (in n) probability
of error.

It easy to check that the above reasoning works when (t+1)/n > (t′−t−1)/l.
The only case, when it breaks down is when the above expectations are too close
to each other such that the Chernoff bound does not apply. However, this can be
fixed in the following way: guess a few positions of Gpub and run D. Note that
once t + 1 candidate columns for Gpub are obtained, they can be easily verified
by placing the error locations on them and submitting such the view to S. If the
initial guess was wrong, guess a different set of columns and start over. Since
the probability of the correct guess is non-negligible, the expected running time
is polynomial in n.

In case of (t′ − t − 1)/l > (t + 1)/n, we slightly modify the construction of
D: it will iterate until n2+ε non-erasure views are encountered. Note that in this
case, the expected score of Gpub’s column is at most tn1+ε, while that of G′ is at
least (t′ − t)n2+ε/l. Thus, the reasoning before applies in a similar way.

Protection of Sensitive Security Parameters
in Integrated Circuits

Dejan E. Lazich1 and Micaela Wuensche2

1 Micronas GmbH
Hans-Bunte-Str. 19
D-79108 Freiburg
lazic@ira.uka.de

2 Institut fuer Algorithmen und Kognitive Systeme (IAKS)
University of Karlsruhe
Am Fasanengarten 5
D-76131 Karlsruhe

Abstract. To protect sensitive security parameters in the non-volatile
memory of integrated circuits, a device is designed that generates a spe-
cial secret key (called IC-Eigenkey) to symmetrically encrypt this data.
The IC-Eigenkey is generated by the integrated circuit itself and there-
fore unknown to anybody else. The desired properties of such an IC-
Eigenkey are postulated and a theoretical limit on the distribution of
IC-Eigenkeys over an IC-production series is derived. The design of the
IC-Eigenkey generator is based on silicon physical uncloneable functions.
It exploits the marginal random variations of the propagation delays of
gates and wires in an integrated circuit. A method is introduced that
uses codewords of error control codes to configure the IC-Eigenkey gen-
erator in a way that the generated bits are as statistically independent
of each other as possible.

Keywords: Cryptography, Coding Theory, Signal Processing, Crypto-
graphic Module, Sensitive Security Parameters, Physical Uncloneable
Functions, Error Control Codes.

1 Introduction

Monolithic integrated circuits (ICs), well known as chips, are basic hardware
components of present-day cryptographic modules that are designed to provide
security services in communication networks. In order to be protected against all
kinds of physical attacks, the relevant security parts of a cryptographic module
are placed inside of its cryptographic boundary, including all critical hardware
and software components. The size of a cryptographic boundary can range from a
chipset, a group of ICs designed to work together, to a small area on a single chip.
It covers one or more cryptographic devices that execute specified cryptographic
functions. Every time a cryptographic device has to carry out a cryptographic
function, all sensitive data needed for this task must be transferred to this device

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 157–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 D.E. Lazich and M. Wuensche

before the execution of the function. This data itself has to be protected against
unauthorized disclosure and modification.

An IC, designed to carry out cryptographic functions, can use a variety
of secret, private and public cryptographic keys, authentication data such as
passwords and PINs, as well as other kinds of sensitive data whose disclosure
and/or modification can compromise the security of its cryptographic function.
Throughout this paper, all such critical data an IC needs to complete its desig-
nated security functions will be called Sensitive Security Parameters (SSPs) [1].
Some SSPs will be transferred to the IC during the personalization phase of its
lifecycle; others can be generated during its operational deployment in the end-
user phase, either on its own or by communicating with other ICs (in the same
or in another cryptographic module) using different key transport/agreement
protocols. As soon as SSPs arise, some of them must be stored in non-volatile
memory, to be used later for certain security tasks whenever they are needed
during the IC’s operational deployment.

During the whole lifecycle of an IC the stored SSPs should be protected against
all relevant kinds of implementation attacks [2]. These attacks represent all unau-
thorized manipulations (tampering) that take advantage of inherent flaws and
weaknesses in the design and physical implementation of cryptographic func-
tions in an IC. The usual approach to effective protection consists in several
kinds of tamper-resistant countermeasures which can be combined with tamper-
responsive actions and tamper-evident indications. Currently, four main types of
tamper-resistant countermeasures, called security mechanisms, are in use [3]. The
Physical security mechanism prevents an attacker from accessing the processing,
connecting and storage elements of the IC. The Data storage cell security mech-
anism refers to the resistance that the IC presents to active and passive probing
of storage cells. It is assumed that attacks against the data storage cell secu-
rity mechanism aim only at measuring the charge of the storage cell and not
at gaining access to the circuitry, which is a property of the physical security
mechanism. The IC’s Environmental exchange security mechanism is designed
to protect the IC against changes in its environment that will take the IC out
of its normal operating mode. The object of the Leakage security mechanism is
to consider the emanations from the IC under a varying set of environmental
conditions.

All these security mechanisms are mainly considered against dynamic attacks,
when the IC is operating and just executes its cryptographic function. However,
in case of the data storage cell security mechanism for protection of plaintext
SSPs in non-volatile memory, static attacks on this non-volatile memory have
to be taken into consideration, too. Attacks of this kind can take place at any
time, even if the IC is not currently executing its cryptographic function, but in
standby or even disconnected from power. Protecting an IC against a static at-
tack on its non-volatile memory where SSPs are stored in plaintext is especially
difficult, since in this case the attacker often has enough time and is undis-
turbed while attacking cryptographic modules embedded in risky environments.
In contrast to this, a dynamical attack is subject to constraints regarding the

Protection of Sensitive Security Parameters in ICs 159

timing, the short duration and the protected flow of the crypto algorithms that
are executed.

Aside from the data storage cell security mechanism, a different approach
exists to protect SSPs in non-volatile memory, so that in this case only measures
against dynamic implementation attacks are necessary. In this approach, the
SSPs are symmetrically encrypted using a special secret key, which is generated
by the IC itself and therefore unknown to anybody else. In their encrypted
form, the SSPs can be stored in any non-volatile memory in or outside the
cryptographic boundary, or even outside the cryptographic module. In this case,
the data storage cell security mechanism is no longer necessary to protect the
non-volatile memory containing the SSPs in plaintext. The special secret key
used for the encryption/decryption of the SSPs must be a binary, time-invariant
true random number which will be called the IC-EigenKey (IC-EK) throughout
the paper.

Due to the vital importance of the IC-EK to the security of the whole cryp-
tographic module, standard methods for generation and non-volatile storage of
random cryptographic keys in an IC [4] are not sufficient in this case. Partic-
ular physical properties and technical mechanisms must be used to keep the
complete information about the IC-EK in a hidden analog form within the IC
during its complete lifecycle. Only on demand (when some SSPs must be de- or
encrypted) and only by means of a suitable extraction circuit can the IC-EK be
extracted from this disguised, unrecognizable non-digital form and converted to
its binary form. The binary form of the IC-EK should only be applied as short
as possible and afterwards be deleted instantly and without a trace. During this
short period the IC-EK is protected by all needed security mechanisms against
dynamical attacks. Only its basic disguised analog form may be kept in the IC as
necessary information for the next extraction of the binary form of the IC-EK.

Compared to the data storage cell security mechanism for protection of plain-
text SSPs stored in non-volatile memory, the alternative with an IC- Eigenkey
needs some additional data-processing, i.e. the extraction of the IC-EK to its dig-
ital form, the generation of a cryptographic hash value to check the IC-EK in-
tegrity and finally the decryption of the SSPs. On the other hand, the application
of extensive and costly tamper resistance techniques for protecting the non-volatile
memory is obsolete. This applies especially to multi-functional single-chip crypto-
graphic modules in embedded systems. Such modules, known as Systems on Chip
(SoC), are designed to carry out one or more non-cryptographic functions as a pri-
mary task, while additional cryptographic functions are realized on the same chip.
SoCs are often embedded in risky environments and thus are more frequently sub-
ject to implementation attacks. They are also highly sensitive to growing manufac-
turing costs. In order to minimize these costs in SoCs, the cryptographic boundary
is often reduced only to a small area on the chip with no additional chip-external
protection measures. In this case, the protection of SSPs by IC-Eigenkeys can have
some advantages compared to the data storage cell security mechanism. Therefore,
in the present paper a device for the generation of a suitable IC-Eigenkey will be
described.

160 D.E. Lazich and M. Wuensche

The remainder of this paper is is organized as follows. In Chapter 2, the
desired properties of an IC-EK will be postulated and a theoretical limit on
the distribution of IC-EKs over an IC-production series will be derived. In
Chapter 3, different existing methods and technologies useful for the realization
of an IC-EK generator will be presented, particularly a silicon-based alternative
that is of special interest for the present paper. Chapter 4 introduces the ar-
chitecture of an IC-EK generator. The configuration and control of this IC-EK
generator will be discussed in Chapter 5, and simulation and test results for
different configurations of IC-EK generators are described in Chapter 6.

2 Properties of the IC-Eigenkey

Every single IC (IC-instance) from an IC-production series of M identical ICs,
manufactured using the same lithographic masks, has to generate a binary num-
ber of N bit length upon a call of an IC-EK initialization command. This number,
which is the IC-Eigenkey (IC-EK), is unique for this one IC-instance and un-
predictable before it has been generated for the first time. Subsequently, every
call of the IC-EK initialization command in this IC-instance must generate the
same number again, regardless if the IC has been in standby or even discon-
nected from power in between. The IC-Eigenkey of an IC-instance may only be
used for the protection of sensitive security parameters and for the generation
of authenticated identification-data (IC-ID) for an IC-instance.

The IC-EK has to meet the following requirements:

1. Privacy - At no point during the whole lifecycle of the IC may the IC-EK
be disclosed to anybody, nor be reproduced at an unintended location.

2. Integrity - The value of the IC-EK may not be susceptible to influences via
the IC-ports nor in any other way and thus be subject to change. It may
solely be generated by the IC-Eigenkey generator located inside of the IC’s
cryptographic boundary.

3. Local and temporal restrictions - The IC-EK may never leave the IC’s cryp-
tographic boundary, nor be stored in a non-volatile memory. It may only be
available to the circuits for the symmetric de- and encryption of the SSPs.
The volatile storage of the IC-EK, if necessary, may only be effected for a
short time and preferably bitwise. After usage in the de- or encryption pro-
cess of SSPs, its digital value must be deleted instantly. After decryption,
the SSPs will be made available in plaintext to their respective users (that
execute the envisaged crypto-algorithms inside the cryptographic boundary)
and right after their application they must be deleted at once.

4. Resistance to dynamical implementation attacks - The IC’s cryptographic
boundary, and within it the IC-Eigenkey generator itself, must be protected
against all kinds of dynamical implementation attacks.

5. Avoidance of obfuscation - In order to avert attacks by reverse engineer-
ing, the IC-EK generator may not operate based on a hidden deterministic
algorithm or on a known deterministic algorithm with hidden parameters.

Protection of Sensitive Security Parameters in ICs 161

6. Nondeterministic generation - The operation of the IC-EK generator must
be based on a random analog physical process. Each bit value of the IC-
EK must be derived from a true random signal obtained from this physical
process.

7. Time invariance - The set of IC-EK generators of an IC-production series
should be regarded as a unique true random number generator which every
time generates the same binary number in the same IC-instance, while these
numbers are randomly distributed over the instances of the IC-production
series.

8. Non-cloneability - The correct bit value of the IC-EK can be derived from
the true random signal only by an extraction circuit, which is inseparably
integrated in the IC-EK generator, and only after an IC-EK initialization
command has been called. This binary value of the IC-EK may by no other
means and methods be reconstructable.

9. Reliability - The probability of a misinterpretation during the derivation
of IC-EK bits by the extraction circuit, caused by various environmental
disturbances and measurement errors, should be as small as possible. This
IC-EK Bit Extraction Error Probability (BEEP) can be additionally reduced
by using error correcting codes, if the BEEP value is not too high and there-
fore out of the channel capacity region. To provide an integrity check, a
cryptographic hash value of the correct IC-EK can be computed during the
personalization phase of the IC’s lifecycle and kept in the IC’s non-volatile
memory as plaintext.

10. Uniform distribution - The smallest Hamming distance between any two IC-
EKs generated in different IC-instances of an IC-production series of identical
ICs should be as large as possible. This is necessary in order to keep an
exhaustive search for further IC-EKs as comprehensive as possible, after one
or more IC-EKs have been discovered (compromised). Furthermore, the bit
length N of the IC-EK should be long enough to ensure that the maximal
possible minimum Hamming distance between IC-EKs, dHm , can reach an
acceptance limit.

From an Information theory point of view, the N -bit IC-EKs of M different IC-
instances in an IC-production series which are resistant against the exhaustive
search attack should constitute the codewords of a minimax binary block code
(N, M, dHm)q=2 with a small code rate R = (log2 M)/N . For this case it was
shown that the codewords are uniformly distributed over the complete encoding
space containing 2N possible N -tuples [5]. Furthermore, it can be shown that
random binary block codes, whose codewords represent random vectors with
statistically independent and uniformly distributed binary random variables as
components, asymptotically meet the properties of the minimax block codes [6].
Therefore, also the single random bits of the IC-EKs of an IC-production series
should be mutually statistically independent, so that the IC-EKs, too, have a
maximal possible minimum Hamming distance of each other, as is stated in
requirement 10.

162 D.E. Lazich and M. Wuensche

If the total number M of IC-instances with an IC-EK of given length N in an
IC-production series is known, then from the Gilbert-Varshamov bound [7], [8]
the maximal possible minimum Hamming distance dHm between two IC-EKs can
be estimated. According to this asymptotic bound (when N → ∞) the highest
code rate, R, of a binary block code with the given minimum distance dHm is
lower-bounded by

R ≤ 1−H2
(
dHm

)
= 1 + dHm

log2
(
dHm

)
+
(
1− dHm

)
log2

(
1− dHm

)
, (1)

where dHm
= dHm/N represents the normalized minimum distance and H2(·)

the binary entropy function. For the here considered binary case, q = 2, the
Gilbert-Varshamov bound is tight or almost tight (still unsolved problem), so
that the derived estimations are highly accurate, if N > 100 [9], [10], [11].

For example, if the IC-production series has a total of M = 224 (ca. 17 mil-
lions) IC-instances with IC-EKs of length N = 256, then according to (1), the
maximal possible minimum Hamming distance dHm will be larger than 80, if
the IC-EKs are truly random and uniformly distributed over the Hamming
space containing all possible 2256 binary 256-tuples. With dHm ≥ 80 the se-
curity against the exhaustive search attack on IC-EKs in such an IC-production
series would be high enough for most of the present-day security criteria. How-
ever, if the bits of an IC-EK are statistically dependent the minimum Hamming
distance between two IC-EKs will be smaller and thus the resistance against the
exhaustive search attack reduced. From this point of view, the main research
objective is to develop an IC-EK generator which generates its IC-EK from bits
whose mutual statistical dependencies are as small as possible.

3 Physical Uncloneable Functions

A promising approach to implement an IC-Eigenkey generator that would per-
form according to the above specifications uses so called Physical Uncloneable
Functions (PUFs) [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], some-
times referred to as Physical Random Functions [12], [21], [22], or Physical One-
Way Functions [23], [24].

These functions are implemented by hardware devices, that produce for any
given input an output that uniquely identifies every single device (instance)
of a series of identical hardware devices. The matching input/output pairs are
called Challenge-Response Pairs (CRPs). To make sure that CRPs are in fact
unique to each instance, the device is designed in a way that its response to a
challenge depends on properties of the device that are subject to random process
variations in manufacturing [25]. Due to the marginally different variations of
these properties in the devices, each one will produce CRPs that are unique and
specific to this instance. The random nature of process variations eliminates the
possibility to control the responses of a device before it is manufactured and
tested.

While many fundamentally different realizations have been described in lit-
erature, all authors agree on some basic properties and definitions which are

Protection of Sensitive Security Parameters in ICs 163

common to all PUFs [12], [13], [14], [15], [16], [17], [18], [19], [20]. They must
be easy to evaluate, meaning they produce the response to a challenge within a
relatively short time. A PUF is described as hard to characterize, if an attacker,
using state-of-the-art technology, has no way of reconstructing it to a point where
he could gain information about the response to a randomly chosen challenge.
The commonly used term of manufacturer resistance refers to the property that
it is technically impossible to produce two completely identical PUFs, because
the process variations that are exploited to determine the PUF’s response can
not be influenced by today’s manufacturing techniques. A PUF is said to be
controlled, if the device that evaluates the response is physically connected to
the PUF in an inseparable way. It controls which challenges are presented to
the PUF and can hide its physical response, if only indirect information like
encryption or hash shall be revealed to the outside world.

Several different approaches to realize a PUF have been described. They all
differ in the basic type of the physical system whose manufacturing process
variations are exploited to generate the PUF responses.

3.1 Different Basic Systems for PUFs

A representative example of an optical PUF is described in [23]. In this system,
a laser beam is aimed through a transparent token and the resulting projection
is processed into a digital response (see Fig. 1a). The token consists of optical-

Fig. 1. (a): Optical PUF [23]. (b): Acoustical PUF [20]. (c): Coating PUF [26].

grade epoxy, that has been mixed with micron-scale glass spheres. The random
distribution of the spheres in the epoxy produces a characteristic speckle pattern
in the projection. The speckle pattern is processed by the 2D Gabor Transform
Algorithm. So the analog challenge, which consisted of the direction and wave-
length of the laser beam, is transformed into a digital response.

A coating PUF, as designed in [26], does not respond to different challenges,
but generates only one fixed bit-sequence as value of the PUF. For this, an array
of capacitive sensors is distributed over the surface of a chip and covered with a
coating containing many randomly distributed particles with different dielectric
constants (see Fig. 1c). Due to the inhomogeneity of the coating, information
about the individual bits is derived from the local coating capacitances around
the sensors.

In [20], an acoustical PUF based on a glass delay line is proposed. Digital
signals are converted by a transducer into mechanical waves. These waves prop-
agate through the glass of the delay line and are reflected several times at its

164 D.E. Lazich and M. Wuensche

edges, until they reach an output transducer and are converted back into digital
signals (see Fig. 1b). Inhomogeneities in the medium, as well as the conversion
between analog and digital signals result in an attenuation and phase change of
the output signal that are specific to each instance.

A type of PUF that has been described in several variations, is the so called
silicon PUF. It is constructed only from semiconductor components, which can
be affected by process variations in many different ways, each of which offers a
different approach to PUF design.

On the lowest level of IC integration, a transistor-based PUF, called integrated
circuit identification device, uses individually addressable MOSFET transistors
to generate responses [27]. They are combined in cells of two transistors at a
time, connected to load resistors. If a cell is activated, it produces a differential
voltage across the load resistors that is directly dependent of the transistors
randomly varying threshold voltages (see Fig. 2a). Stimulating the cells one by

Fig. 2. (a): Transistor cells of an integrated circuit identification device. (b): The re-
sulting differential voltage.

one, the random change of the differential voltage from one cell to the next will
determine the PUF response, as depicted in Fig. 2b.

On a much higher level of IC integration complex circuits in an IC have
been used as PUF. Response times of such a PUF to different challenges were
converted to identification bits in order to identify single chips, as described in
[28].

An efficient family of silicon PUFs uses propagation delay variations of gates
and wires within an IC as the basic principle for PUF development. As this
approach is especially suited as a basic pattern to design the IC-EK generator
that is proposed in this paper, it will be explained in further detail in the next
subsection.

3.2 Silicon PUFs Based on Propagation Delays of Gates

A family of silicon PUFs based on the propagation delay variations of gates and
wires within the IC has been proposed in [12], [13], [14], [15], [18], [19]. These
PUFs are mainly intended for IC identification and authentication purposes.
Here, gates and wires are used as delay elements with specific but randomly
distributed propagation delay variations. They are connected to form a delay
circuit that consists of two separate delay lines, which can be simultaneously

Protection of Sensitive Security Parameters in ICs 165

Fig. 3. (a): Delay circuit with two delay lines and L switching components SC. (b):
Internal design of the switching components.

excited by a signal with a rising edge (see Fig. 3a). The delay lines lead through
L Switching Components (SCs) that are capable of either passing on the signals
in parallel to the following switching component, or crossing the delay lines,
directing the signal on the upper line to the lower one, and vice versa. Each
SC consists of two (2 to 1)-multiplexers, as depicted in Fig. 3b. So the actual
path of each signal through the delay circuit and the resulting delay of each
delay line is determined by an L-bit challenge vector, where each bit bi (i =
0, ..., (L − 1)) corresponds to another switching component, setting it to either
pass on or cross the signals. It is imperative that both delay lines be constructed
perfectly symmetrical, so that differences in total line delays depend only on
random propagation delay variations of their delay elements, not on a possibly
asymmetrical layout.

To evaluate the delay variations and generate a PUF-response, two different
designs have been introduced, each in several slightly different variations.

In an arbiter-based PUF version [18], [19], the measurement circuit that quan-
tifies the response consists of a simple latch at the end of the delay circuit, that
decides on which line the signal edge has traveled faster. An output bit is set
accordingly. So in this design, each L-bit-challenge leads to a 1-bit-response.

Longer responses can be generated in a design based on a self-oscillating loop
(see Fig. 4) [16], [13], [12]. This version uses the same delay lines, routed through
the switching components that are controlled by an L-bit-challenge. Here, the
racing edges will not be measured by an arbiter, but reduced to one single edge.
This can be done by either connecting the outputs of both delay lines to the

Fig. 4. Silicon PUF based on a self-oscillating loop. The measurement circuit counts
its oscillations and generates a response.

166 D.E. Lazich and M. Wuensche

inputs of an AND-gate A (as in Fig. 4) [13], or by substituting the last switching
component with a (2 to 1)-multiplexer so that the last challenge bit determines
which edge will be chosen [12]. Either way, the remaining edge will be inverted
and fed back into the beginning of the delay lines. Thus, a self-oscillating loop is
created. The frequency of its oscillation is directly depending on the paths taken
and on the random propagation delay variations of their gates and wires. The
measurement circuit determines the frequency of the oscillation by counting the
rising edges of the signal during a fixed period of time while the count-signal
is high (see Fig. 4) [16]. The resulting counter-value will be given as response.
So the length of the response to the L-bit-challenge depends on the oscillating
frequency of the loop and the time interval of the measurement.

The arbiter-based PUF version as well as the one based on a self-oscillating
loop both have advantages and disadvantages. The single self-oscillating loop
is better suited to distinguish between different challenges, as the signals pass
the delay line several times to accumulate the differences. However, the absolute
measurement leaves it far more vulnerable to environmental changes, which can
influence propagation delays of gates and wires to a great degree. In contrast to
this, the arbiter version is less accurate in detecting the diminutive variations
between the two delay lines, while it is far more resistant to environmental
changes due to its relative measurement of the line delays which are influenced
by the changes to the same extent.

The delay circuit described in this section consists of only two rows of L delay
elements that can be entwined depending on the challenge vector. Because for
each challenge the same pool of 2L delay elements has to be used, and changes
consist only in varying configurations, the resulting random bits will to a large
degree be mutually statistically dependent.

In the architecture presented in this paper and elaborated in Chapters 4 and
5, the reliability of the self-oscillating loop and the environmental stability of
relatively measured delays will be combined in a single PUF circuit, while the
statistical dependence of the generated bits will be reduced.

4 Delay Line Configuration of the IC-Eigenkey Generator

To implement an IC-EK generator as specified in Chapter 2 a new design of
a silicon PUF based on the propagation delay variations of its gates and wires
will be introduced. In our approach, the components used as propagation delay
elements are inverters, multiplexers, demultiplexers and their connecting wires.
The inverters Ikl (k = 0, ..., (K−1); l = 0, ..., (L−1)) are arranged in form of an
inverter matrix MK×L. They can be interconnected to form two delay lines that
run from the first to the last column of the inverter matrix, using one inverter
in each column. These two Delay Lines denoted by DLi and DLj, each with L
inverters, constitute a Delay Line Pair denoted by DLPij . In order to obtain as
many different DLPs as possible, interconnecting Commutation Circuits (CCs)
are inserted between all columns of the inverter matrix (see Fig. 5). Their internal
structure for K = 4 is depicted in Fig. 6a. The same structure can be realized for

Protection of Sensitive Security Parameters in ICs 167

Fig. 5. IC-EK generator with K × L inverter matrix. The delay lines are configured
by the commutation circuits CCl (l = 1, ..., (L − 1)) and fed back using additional
commutation circuit CC0 to form two ring oscillators. Resulting frequencies are counted
by counters C1 and C2. Response-bit βij is generated by comparing the counter values.

Fig. 6. (a): Internal design of a commutation circuit CCl between inverter matrix
columns. (b) The two halves of commutation circuit CC0 that are added before and
after the inverter matrix (for K = 4).

all other values of K. The CCs are capable of connecting any pair of inverters of
one column to any pair of inverters of the following column allowing only one-to-
one connections. Which inverter pair in a column, called Column Inverter Pair
(CIP), will be selected depends on the control signals of the CCs. In this way
Π = (KL(K − 1)L) different DLPs can be configured throughout the inverter
matrix. As in case of the delay circuit with binary switching components (K = 2)
in Chapter 3.2, it is essential that the layout of the whole circuit is completely
symmetrical. No single delay line may be favored. As can be seen in Fig. 6,
the CCs have a completely symmetrical structure, so that they will not cause
asymmetry in the layout. The wires that conduct the signals on the delay lines,
including those inside the CCs, must be of exactly the same length, regardless

168 D.E. Lazich and M. Wuensche

of which combination of delay elements is traversed. No single delay line may
be favored by the layout. Of course, in reality this is not possible as the circuit
layout is subject to the same random process variations as the delay elements,
but those variations will only contribute to the random delay variations of the
whole delay lines that are exploited in this design.

To benefit from the accumulation of delay variations in a self-oscillating loop,
the outputs of the two configured delay lines are fed back to their inputs to form
two Ring Oscillators (ROs) as shown in Fig. 5. For oscillations to occur, the
number of inverters in each RO must be odd. Either this results in an inverter
matrix MK×L with odd values of L, or an additional inverter must be inserted
into the feedback lines for matrices with even values of L. To implement the
feedback of the signals, additional circuits are added in front of the first column
and after the last column of the inverter matrix (see Fig. 5). They are basically
the two halves of one single CC, referred to as CC0 as depicted in Fig. 6b.

Tests have shown that two ROs oscillating at close range of each other within
one IC tend to synchronize their frequencies and oscillate in unison. To prevent
this undesirable behavior, one of the ROs could be extended with additional
delay elements until its frequency is sufficiently different from that of the other
RO to avoid synchronization. However, this modification must be compensated
when the difference of the frequencies is measured. Therefore, another solution
to this problem will be preferred, where the frequencies of the two ROs will be
measured consecutively, interrupting one while the other is oscillating.

In order to ensure that the ROs configured by the CCs are neither interrupted
nor fused, certain requirements must be met by the control input bits of the CCs.
As shown in Fig. 6, the control input bits will be split into the subsets MUX2,
MUX1, DEMUX1 and DEMUX2. The whole set of all control input bits of all
CCs throughout the inverter matrix will be called the CC control vector, as
shown in Fig. 7. To configure appropriate ROs, the partial control inputs of
each CCl before each column (stage) l of the inverter matrix must satisfy the
following equations:

∀(L−1)
l=0 : (MUX1l �= MUX2l) ∧ (DEMUX1l �= DEMUX2l) (2)

∀L
l=1 :

(
MUX1(l mod L) = DEMUX1(l−1)

)
∧
(
MUX2(l mod L) = DEMUX2(l−1)

)
.

(3)
The first equation is necessary, because if the MUX-signals of one stage l were
equal, one delay line would run into a dead end, while the other would be split in
two. Furthermore, if the DEMUX-signals of one stage were equal, the two sepa-
rate paths would be joined into one. Equation (3) ensures, that the CC of each
stage picks up the signal from the inverter in the same row to which the preceding
CC had passed it on. So the two delay lines will be continuous and not be in-
terrupted. Moreover, equation (3) results in the characteristic of the CCs, where
one of the delay lines is always relayed by the lower multiplexer/demultiplexer
through all CCs and the other one always by the upper. This also guarantees
that the delay lines will not be crossed when they are fed back, which would
result in one single RO of 2L length (like a twisted character “8”).

Protection of Sensitive Security Parameters in ICs 169

Fig. 7. Block scheme of a whole IC-EK generator. An ECC encoder generates the
configuration codeword which is translated by a code conversion circuit into the con-
figuration circuit control vector. The oscillations counted consecutively by counter C1
and C2 will be compared to generate a response bit βij .

With the circuit design described above, Π = (KL(K−1)L) different pairs of
delay lines DLPij can be configured to form the two separate ring oscillators. To
evaluate the resulting delays and generate a response bit, their oscillations will
be counted by two counters for a fixed amount of time. After that a comparator
sets the output bit βij to either 1 or 0, depending on which oscillator has been
faster. So, the value of βij depends directly on the random variations of the
propagation delays of the inverters, gates in the CCs and wires used for the
delay lines. In this way, a total of Π bits (one per DLP) can be generated. They
form a pool, from which the IC-EK can be built.

As high demands on the statistical independence of IC-EK bits are made in
Chapter 2, the issue of which bits to use from this pool is critical. Therefore in
the next chapter it will be considered which procedure is suitable to select DLPs
for the generation of IC-EK-bits.

5 Configuration Control of the IC-Eigenkey Generator

The high degree of statistical dependence of any two response bits generated by
the silicon PUFs described in Chapter 3.2 is due to the fact that the delay lines
that generated the respective bits shared all their delay elements, only in different
combinations. The more delay elements can be used by only one of the two delay
line pairs (DLPs), i.e. the more distinctive the difference between them, the less
statistical dependent the resulting bits will be. A reasonable assumption is, that
the propagation delay variations of inverters combined with the corresponding
gates in the CCs are identically independently distributed Gaussian random
variables. Under this assumption, two DLPs that consist of completely disjoint
sets of inverters from MK×L will produce two random, statistically independent

170 D.E. Lazich and M. Wuensche

Fig. 8. Notation of column inverter pairs and delay line pairs from an inverter matrix
M4×4

bits. In order to be able to determine, which DLPs from MK×L are best suited
to produce a sequence of N bits as independent as possible, a measure for the
difference of two DLPs should be defined.

To this end, a special notation for the description of the DLPs is introduced.
As each delay line spans through the whole width of the inverter matrix, using
exactly one inverter per column, it is sufficient to denote the index of the row of
the used inverter to uniquely identify each delay line. The two delay lines depicted
in Fig. 8 would thus be denoted as DLi = [0, 0, 1, 3] and DLj = [3, 2, 0, 1].

The two inverters used by a DLP in one column of MK×L will be called a
Column Inverter Pair (CIP) and denoted by the tuple of their row indices. The
order in which the indices appear in the tuple is important, as it defines to which
delay line in the pair the corresponding inverter belongs. So the CIPs [i, j] and
[j, i] are not the same. A delay line pair can consequently be uniquely described
by the sequence of its CIPs throughout the inverter matrix. In the example of
Fig. 8 that would be DLPij = [[0, 3], [0, 2], [1, 0], [3, 1]]. Note, that according to
(2), the two inverters of a CIP must always be different.

With this definition of delay line pairs, a measure for their difference can be
introduced. It will be called the strong Hamming distance between delay line
pairs and denoted by dHs . It reaches its maximum, when in each column of the
inverter matrix the CIPs of the two delay line pairs are completely disjoint. Be
Gs the number of columns in which the CIPs of the delay line pairs DLPij and
DLPmn share at least one inverter, then their strong Hamming distance will be

dHs (DLPij , DLPmn) = L−Gs . (4)

As two DLPs require at least K = 4 rows in the inverter matrix in order not
to share an inverter, dHs between any DLPs in an inverter matrix MK×L with
K < 4 will always be zero. To provide a measure for the difference in these cases,
too, the weak Hamming distance dHw between delay line pairs will be defined.
In contrast to the strong Hamming distance dHs , the weak Hamming distance
dHw tolerates shared delay elements. As in case of the strong Hamming distance,
the maximum value of the weak Hamming distance is also L, but it will only be
decreased if the delay line pairs use completely identical CIPs in a column of the

Protection of Sensitive Security Parameters in ICs 171

inverter matrix. Be Gw the number of columns with such identical CIPs, then
the weak Hamming distance between two delay line pairs DLPij and DLPmn

will be
dHw (DLPij , DLPmn) = L−Gw . (5)

As an example, consider the two delay line pairs DLPij = [[0, 3], [0, 2], [3, 0], [3, 1]]
and DLPmn = [[1, 4], [0, 2], [3, 2], [1, 3]]. They run through L = 4 stages, from
stage l = 0 to stage l = 3. Their weak Hamming distance dHw (DLPij , DLPmn) is
4−1 = 3, because only once, in stage l = 1, do they use the same column inverter
pair. Their strong Hamming distance dHs(DLPij , DLPmn) is only 4− 3 = 1, as
it is additionally reduced in stage l = 2 where they share one delay element, and
in stage l = 3 where the same delay elements are used, only in different order.

As a measure of the difference between two delay line pairs, the weak and
strong Hamming distances between them can also be considered a measure of
the statistical independence of the two resulting bits βij and βmn. Only when the
strong Hamming distance is maximal (dHs(DLPij , DLPmn) = L), will the two
corresponding random bits be completely independent. The smaller the Ham-
ming distance (strong or weak), the more dependent they are. Given equal values,
the strong Hamming distance signifies considerably less statistical dependence
between the random bits βij and βmn.

As the N bits that form the IC-EK shall be as statistically independent as
possible, delay line pairs with a Hamming distance (strong or weak) as large as
possible should be chosen for their generation. To realize this selection, Error
Control Codes (ECCs) with large minimum Hamming distances will be applied.
For this, single symbols of a q-ary symbol alphabet of an ECC can be mapped to
the column inverter pairs of the inverter matrix, so that a codeword of length L of
an ECC corresponds to a delay line pair throughout the inverter matrix MK×L.
The number of codewords of the ECC is equal to the number N of bits of the
IC-EK. An ECC (L, N, dHm)q that maximizes the minimal Hamming distance
dHm between its codewords will be called the configuration code of the IC-EK
generator. The Hamming distance between two codewords of the configuration
code should equal the strong (or weak) Hamming distance between the two DLPs
these codewords define.

To appropriately encode the DLPs by the codewords of the configuration code,
the valid CIPs in MK×L will be assigned one-to-one to the code symbols from
the q-ary alphabet of the configuration code. Which of the CIPs are considered
valid depends on the level of statistical independence that is to be provided.
If it is considered sufficient to maximize the weak Hamming distance between
delay line pairs, valid CIPs in an inverter matrix with K = 4 rows would be
[0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 3], [2, 0], [2, 1], [2, 3], [3, 0], [3, 1] and [3, 2]. An ex-
ample for this is depicted in Fig. 9. The remaining combinations may not be used
because, as stated above, the two elements of a CIP must always be unequal.
If instead of the weak Hamming distance the strong one were to be maximized,
the number of valid column inverter pairs would in this case be reduced to a set
of two, where any two column inverter pairs are disjoint. One set of valid column

172 D.E. Lazich and M. Wuensche

Fig. 9. Example for mapping a q-ary symbol alphabet of an ECC to the valid column
inverter pairs of an MK×L inverter matrix, and the delay lines defined by a config-
uration codeword (valid column inverter pairs to maximize weak Hamming distance
between DLPs)

inverter pairs to maximize the strong Hamming distance would be for instance
([0,1],[2,3]). Obviously, the number of possible configuration codewords would
be substantially reduced and with it the length N of the IC-EK. To generate
the same number of bits for an IC-EK, a considerably larger inverter matrix
would be required. This poses an important design decision, where the tradeoff
between IC-EK-security and circuit size must be carefully considered.

A class of ECCs suitable as configuration codes are q-ary linear Maximum
distance separable block codes, whose minimum distance equals p+1, where p is
the number of parity-check symbols [6]. This is the maximal possible value for
the minimum distance for given values of q, L and N . A subfamily of these codes
are the Reed-Solomon codes [30]. They are cyclic, which makes the encoder of
these codes simple to realize. However, for this application, they do have certain
limitations, e.g. that the number q of code symbols must be a power of 2 at a
codeword length of L = q − 1. Therefore, modifications of the code (shortening,
expurgation or puncturing) might be necessary for certain formats of the inverter
matrix MK×L. Alternatively, a suitable non linear ECC can be constructed using
computer search/optimization algorithms. This task should not be too complex,
since the code rate is small and the code length not too high.

To implement the chosen configuration code with the IC-EK generator, an
encoder circuit is needed to generate its codewords. The codewords of the con-
figuration code then have to be converted by a code conversion circuit into the
CC control vector needed by the commutation circuits to actually select in each
matrix column the CIP that is encoded by the corresponding symbol of the con-
figuration code (see Fig. 7). Note, that in this new application of error control
codes neither detection nor correction of erroneous codesymbols are carried out.
Instead, the redundancy of deterministic ECCs is used only to select delay line
pairs that produce bits as statistically independent as possible. Therefore, no
decoder for the ECC is needed, which is a considerable advantage, as an ECC
decoder is usually much more complex then an ECC encoder.

A block scheme of a whole IC-EK generator including the ECC encoder and
the code conversion circuit is shown in Fig. 7.

Protection of Sensitive Security Parameters in ICs 173

6 Simulation Results and Tests

An error control code that is especially suited as a configuration code for an
IC-EK generator is the simplex code [6]. It is a linear binary block code (L, L +
1, (L + 1)/2)q=2 that has a very small code rate R = (log2(L + 1))/L. The
number N = L + 1 = 2n; (n = 1, 2, ...) of codewords in a simplex code can only
be a power of two. This family of error control codes provides the maximally
possible minimum Hamming distance dHm . All the codewords of a simplex code
with codeword length L have the same Hamming distance dHm = (L+1)/2 from
each other. This uniform distribution of codewords makes the simplex code ideal
as a configuration code for the IC-EK generator.

The symbol alphabet of simplex codes is binary, q = 2. This reduces the
number of column inverter pairs (CIPs) that can be encoded, and thus the
capability to decorrelate the bits of a resulting IC-EK. Although this could be
considered a disadvantage for the application as a configuration code, the simplex
code family has the evident advantage that it can be generated very simple by
a maximum length Linear Feedback Shift Register (LFSR) of length n [31]. If
its feedback is determined by a primitive polynomial, it will produce a different
codeword of the simplex code for each of the 2n possible initial values [32]. An
additional advantage of the binary simplex code consists in the very simple code
conversion into the CC control vector. This conversion can be realized by L
parallel XOR-gates, as shown in Fig. 10.

Fig. 10. IC-EK generator with a 2 × L inverter matrix. The configuration codeword is
generated by a maximum length LFSR and converted by a conversion circuit of parallel
XOR-gates into the CC control vector for the CCs.

6.1 Simulation Results

In order to check if the ideal uniform distribution of codewords of the simplex
code can compensate for the suspected disadvantage of the binary symbol al-
phabet, a simulation has been performed.

174 D.E. Lazich and M. Wuensche

Fig. 11. Distribution of Hamming distances of the 256-bit-IC-EKs of 500 simulated ICs
with an inverter matrix M2×255 . (a): Using a simplex configuration code. (b): Using
Gray-code for configuration.

To keep the duration of the simulation within a reasonable limit, only M = 500
IC-instances have been simulated, each with an IC-EK generator with an inverter
matrix M2×255. The randomly varying delays have been modelled by a Gaussian
random variable. The Configuration of the delay line pairs was done using a
(256, 255, 128)2 simplex code. For every single one of the M = 500 simulated
IC-EKs of length N = 256, its Hamming distance to all other IC-EKs has been
determined. The distribution of the resulting M(M − 1)/2 = 124750 Hamming
distances is presented in Fig. 11a.

For comparison, the same simulated IC-EK generators were also configured
using 256 binary 255-Bit numbers, generated by a Gray-code counter initialized
with a random starting value . The distribution of the resulting Hamming dis-
tances between those simulated IC-EKs can be seen in Fig. 11b. Obviously, in
this latter case the Hamming distances that occur by far most frequently are
0 and 256. Most of the resulting IC-EKs are uniformly either 0 or 1, because
from one Gray-code number to the next the change in DLP configuration is
only marginal (one out of L CIPs changed). This is not enough to lead to an
acceptable probability for a change of the value of the next IC-EK bit βij . Tests
performed using other counters have shown similar results.

In contrast to the counter-based configuration, the distribution of the IC-EKs
generated with a simplex code (see Fig. 11a) results in a bell-shaped curve. It
shows a minimal value of 95. The same value is estimated using the Gilbert-
Varshamov bound given by (1) in Chapter 2. Therefore, it can be assumed that
for much larger IC-production series the minimum Hamming distances between
all IC-EKs obtained by a simplex code can also be accurately estimated according
to the Gilbert-Varshamov bound (1). For the more realistic example at the end
of Chapter 1, where M was approximately 17 millions, a minimum Hamming
distance of approximately 80 can be expected. With this Hamming distance,
classical privacy amplification (e.g. hash-functions) for additional randomization
of the IC-EKs is not needed.

It is interesting to note, that the mean value of the distribution in Fig. 11a
is located at N/2 = 128 which is just the minimum Hamming distance of a

Protection of Sensitive Security Parameters in ICs 175

simplex code with N codewords. The codewords of such a simplex code can be
regarded as the 256 vertices of a regular simplex polytope in 255-dimensional
Euclidian space. The 500 simulated IC-EKs would be randomly located around
these vertices, which is ideal to keep an exhaustive search attack after one or
more IC-EKs have been compromised as extensive as possible. Therefore, the
simplex code family can be considered a very good choice for a configuration
code to generate IC-EKs, despite the above presumed disadvantage of a binary
symbol alphabet.

6.2 Test Results

In order to test a hardware implementation of the IC-EK generator with a sim-
plex code, an M2×15 inverter matrix has been realized with CMOS-gates in
separate ICs on a carefully symmetrically designed test board. Two counters
implemented on an FPGA-board measured the oscillations of the ring oscilla-
tors, while the generation of the codewords of the (16, 15, 8)2 simplex code and
their conversion into CC control vectors were carried out by a microcontroller.
The implemented device in this experimental setup schematically corresponds to
Fig. 10.

Along the horizontal axis of the diagram in Fig. 12, all possible 215 codewords
of the implemented configuration code are uniformly listed. Each dot shows the
number of oscillations of one RO during 5ms for a given codeword on the axis.
To visualize the impact of the Hamming distance between two codewords on
the frequencies of the RO, a bar chart has been added to the diagram. For each
codeword on the horizontal axis, the Hamming distance to the one at its left is
plotted. It is evident, that larger Hamming distances between the codewords ac-
tually result in larger variations of the RO frequencies, which further emphasizes

Fig. 12. Oscillation frequencies of one RO of the tested IC-EK generator, compared to
the Hamming distances of their configuration codewords

176 D.E. Lazich and M. Wuensche

the effectiveness of error control codes with a high minimum Hamming distance
as configuration code.

Although the performed test using CMOS-gates in separate ICs was only done
at a small scale (K = 15), it was nevertheless necessary in order to provide a
possibility for measurements at various points of the test equipment, which is
not possible in a fully integrated circuit. In this way, various side effects that
might influence IC-EK generation could be checked. With this experience, the
next step in testing would be to implement the IC-EK generator in a single IC
with a high integration scale.

7 Conclusion

A method for the protection of sensitive security parameters in integrated cir-
cuits is proposed. The sensitive security parameters are symmetrically encrypted
using a special secret key, called the IC-Eigenkey. This key is generated by the
integrated circuit itself and therefore unknown to anybody else. The IC-Eigenkey
is never stored in non-volatile memory. Instead, the complete information about
it is kept in a hidden analog form within the integrated circuit. Only on demand
can it be extracted and converted to its binary form. For this purpose a suitable
extraction circuit is described, called the IC-Eigenkey generator. It is designed
based on a silicon physical uncloneable function and uses the randomly varying
propagation delays of inverters, multiplexers, demultiplexers and wires which are
symmetrically arranged in form of a matrix. Single bits are generated by compar-
ing propagation delays of selected components from the matrix. To choose bits
for the IC-Eigenkey that are as statistically independent as possible, a measure
is introduced for the dependence of two generated bits from each other. Based
on this measure, the selection of matrix components for the generation of bits is
realized by codewords of an error control code. This is done in a way that a larger
Hamming distance between two codewords results in less statistical dependence
between the two generated bits. The high effectiveness of error control codes for
this application is demonstrated by a simulation of an IC-Eigenkey generator
that uses a simplex code and by practical measurements.

Acknowledgments. The authors would like to thank Willi Geiselmann and
Sebastian Kaluza for helpful discussions.

References

1. FIPS PUB 140-2, Security Requirements for Cryptographic Modules, National In-
stitute of Standards and Technology (2002),
http://csrc.nist.gov/groups/STM/index.html

2. Lemke, K.: Embedded Security: Physical Protection against Tampering Attacks.
In: Lemke, K., Paar, C., Wolf, M. (eds.) Embedded Security in Cars. Springer,
Heidelberg (2006)

http://csrc.nist.gov/groups/STM/index.html

Protection of Sensitive Security Parameters in ICs 177

3. Joint Interpretation Library CC/ITSEC: Integrated Circuit Hardware Evaluation
Methodology - Vulnerability Assessment, Version 1.3 (2000),
http://www.bsi.de/zertifiz/itkrit/itsec.htm

4. Smith, S.W., Weingart, S.: Building a High-Performance, Programmable Secure Co-
processor, Technical Report, IBM T.J. Watson Research Center, P.O Box. York-
town Heigts NY 10598, USA (Revision of October 16, 1998), http://www.research.
ibm.com/secure systems department/projects/scop/papers/arch.pdf

5. Blahut, R.: Principles and Practice of Information Theory. Addison-Wesley,
Reading (1987)

6. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977)

7. Gilbert, E.N.: A Comparison of Signalling Alphabets. Bell System Technical Jour-
nal 31, 504–522 (1952)

8. Varshamov, R.: Estimate of Number of Signals in Error Correcting Codes, Tech.
Rep. 117, Dokl. Akad. Nauk, SSSR (1957)

9. Beth, Th., Lazic, D.E., Senk, V.: The Generalised Gilbert-Varshamov Distance of
a Code Family and its Influence on the Family’s Error Exponent. In: Proceedings
of the International Symposium on Information Theory & Its Applications 1994,
Sydney, Australia, vol. 1, pp. 965–970 (1994)

10. Beth, Th., Kalouti, H., Lazic, D.E.: Which Families of Long Binary Linear Codes
Have a Binomial Weight Distribution? In: Giusti, M., Cohen, G., Mora, T. (eds.)
AAECC 1995. LNCS, vol. 948, pp. 120–130. Springer, Heidelberg (1995)

11. Beth, T., Lazic, D.E., Kalouti, H.: On the Relation Between Distance Distributions
of Linear Block Codes and the Binomial Distribution. Annales des Telecommuni-
cations, special issue on Channel Coding 50(9-10), 762–778 (1995)

12. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security (2002)

13. Gassend, B., Clarke, D., Lim, D., van Dijk, M., Devadas, S.: Identification and
Authentication of Integrated Circuits. In: Concurrency and Computation: Practice
and Experience. Wiley, Chichester (2003)

14. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A Technique
to build a Secret Key in Integrated Circuits for Identification and Authentication
Applications. In: 2004 Symposium on VLSI circuits, pp. 176–179 (2004)

15. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled Physical Random
Functions. In: 18th Annual Computer Security Applications Conference (ACSAC
2002), p. 149 (2002)

16. Gassend, B.: Physical Random Functions, Master’s Thesis, Massachusetts Institute
of Technology (2003)

17. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Delay-Based Circuit Authenti-
cation and Applications. In: Proceedings of the 2003 ACM symposium on Applied
computing, Melbourne, Florida, pp. 294–301 (2003)

18. Lim, D.: Extracting Secret Keys from Integrated Circuits. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 13, 1200–1205 (2005)

19. Lim, D.: Extracting Secret Keys from Integrated Circuits, Master’s Thesis, Mas-
sachusetts Institute of Technology (2004)

20. Vrijaldenhoven, S.: Acoustical Physical Uncloneable Functions, Master’s Thesis,
Technische Universiteit Eindhoven (2004)

21. Suh, G.E., O’Donnell, C.W., Devadas, S.: AEGIS: A Single-Chip Secure Processor.
IEEE Design&Test of Computers 24(6), 570–580 (2007)

http://www.bsi.de/zertifiz/itkrit/itsec.htm
http://www.research.ibm.com/secure_systems_department/projects/scop/papers/arch.pdf
http://www.research.ibm.com/secure_systems_department/projects/scop/papers/arch.pdf

178 D.E. Lazich and M. Wuensche

22. Suh, G.E., O’Donnell, C.W., Sachdev, I., Devadas, S.: Design and Implementation
of the AEGIS Single-Chip Secure Processor using Physical Random Functions.
In: Proceedings of the 32nd International Symposium on Computer Architecture
(ISCA 2005), pp. 25–36 (2005)

23. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-Way Functions.
Science 297, 2026–2030 (2002)

24. Pappu, R.S.: Physical One-Way Functions. RSA Laboratories Cryptobytes 6(2)
(Summer 2003)

25. Nassif, S.R.: Modeling and Forecasting of Manufacturing Variations. In: 5th Inter-
national Workshop on Statistical Metrology, pp. 2–10 (2000)

26. Skoric, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-Theoretic Analysis
of Capacitive Physical Unclonable Functions. Journal of Applied Physics 100(2)
(2006)

27. Lofstrom, K.: System for Providing an Integrated Circuit with a unique Identifi-
cation, US Patent Publication, Pat.No. 6,161,213 (2000)

28. Kahlmann, J.A.H.M., Akkermans, A.H.M.: Method for Protecting Information
Carrier Comprising an Integrated Circuit, US Patent Application Publication, PUB
No. US2007/0038871 A1 (2007)

29. Devadas, S., Gassend, B.: Reliable Generation of a Device-Specific Value, US
Patent Application Publication, PUB No. US2006/0271793 A1 (2006)

30. Wicker, S., Bhargava, V.: Reed-Solomom Codes and Their Applications. IEEE
Press, Los Alamitos (1994)

31. Bossert, M.: Kanalcodierung, Teubner Verlag Stuttgart (1998) ISBN 3519161435
32. Golomb, S.W., Gong, G.: Signal Design for Good Correlation for Wireless Com-

munication, Cryptography and Radar. Cambridge University Press, Cambridge
(2005)

33. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

On Reconstruction of RC4 Keys from Internal States

Shahram Khazaei1 and Willi Meier2

1 EPFL, Lausanne, Switzerland
2 FHNW, Windisch, Switzerland

Abstract. In this work key recovery algorithms from the known internal states of
RC4 are investigated. In particular, we propose a bit-by-bit approach to recover
the key by starting from LSB’s of the key bytes and ending with their MSB’s.

Keywords: Binary Hypothesis Testing, Stream Ciphers, Key Recovery, RC4.

1 Introduction

Synchronous stream ciphers are symmetric cryptosystems which are suitable in soft-
ware applications with high throughput requirements, or in hardware applications with
restricted resources (such as limited storage, gate count, or power consumption). RC4 is
probably the most popular stream cipher in use. In this work we are going to investigate
the key recovery algorithms from the known internal states of RC4. Roos in 1995 [6]
noticed that some of the elements of the initial permutations have a bias towards a linear
combination of the secret key bytes. A theoretical proof of these biases was given by
Paul and Maitra [5] which was later generalized by Biham and Carmeli [2]. In [5,2] the
authors also provide algorithms for key reconstruction from the internal state using the
derived biases. However the algorithms from [5] have high complexities, low success
probabilities and the one from [2] has low complexity, and still low success probabil-
ity. In addition, the authors of [2] did not analyze the complexity of their algorithm for
having a higher success probability. In fact, the newly found generalized biases have
not been exploited to the degree they deserve in the key recovery algorithm of [2]. The
main idea of our work is to fully exploit the whole distribution of noises expressing
these biases. In a hypotheses testing model, we then study how far one can go by using
only the distribution of noises. Having carefully analyzed the noise distributions, we
then propose a bit-by-bit approach to recover the key bits by starting from LSB’s of the
key bytes and ending with their MSB’s. The nice feature of our algorithm is that we
are able to estimate its complexity versus success probability, showing possibility of
recovering the key with high success probability but reasonable time complexity.

2 Description of RC4 and Notations

RC4 is composed of a Key Scheduling Algorithm (KSA) and a Pseudo Random Gener-
ation Algorithm. It works with the set of integers ZN = {0, ..., N − 1} and its internal
state is a permutation S = (S[0], . . . S[N − 1]) over ZN (N = 256 in practice). RC4
uses keys k = (k[0], . . . , k[l−1]) of length l (typically 5 ≤ l ≤ 16) over ZN . The KSA
computes the internal state from the key k to be used by the PRGA in order to produce
a keystream sequence of integers over ZN , see Alg. 1 and 2.

J. Calmet, W. Geiselmann, J. Müller-Quade (Eds.): Beth Festschrift, LNCS 5393, pp. 179–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 S. Khazaei and W. Meier

Notations: K = (K[0], . . . , K[N − 1]) denotes an array of size N over ZN such that
K[i] = k[i mod l] for 0 ≤ i ≤ N − 1. The value of the array S right after the KSA
is denoted by SN and the array C = (C[−1], . . . , C[N − 1]) over ZN is defined as
C[−1] = 0 and C[i] = SN [i]− i(i+1)

2 for 0 ≤ i ≤ N − 1. For an array A we use the

notation A[i, j] =
∑j

t=i A[t].

Algorithm 1. RC4 KSA
1: for i = 0, 1, . . . , N − 1 do
2: S[i] = i.
3: end for
4: j = 0.
5: for i = 0, 1, . . . , N − 1 do
6: j = j + S[i] + K[i].
7: end for

Algorithm 2. RC4 PRGA
1: i = 0.
2: j = 0.
3: repeat
4: i = i + 1.
5: j = j + S[i].
6: Swap S[i] and S[j].
7: Output z = S[S[i] + S[j]].
8: until enought outputs have been produced.

The goal of the attacker is to determine the secret key out of a known segment
of keystream. This can be done in two steps: first to determine a state out from the
keystream segment, and in a second step to determine the key out of the internal state.
Note that the initial state SN can be easily computed given any intermediate internal
state at any time during the PRGA. In this paper we only deal with the second step, i.e.
recovering the secret key k from a given initial state SN (or equivalently from array C).
The interested reader is referred to [4] for the best known attack on the first step, i.e.
recovering the internal state from the known keystream segment. Another type of at-
tack on RC4 is key recovery attack when the secret key contains a known initialization
vector part and the attacker has access to the keystreams of many (chosen) initialization
vectors for the same unknown key part, see [8] for a recent attack.

3 Previous Results

Roos in 1995 [6] noticed that some of the elements of the initial permutations have a
bias towards a linear combination of the secret key bytes. A theoretical proof of these
biases was given by Paul and Maitra [5], later generalized by Biham and Carmeli [2].
Thanks to our choice C[−1] = 0, these results can be given in a unified theorem as
follows.

On Reconstruction of RC4 Keys from Internal States 181

Theorem 1. Assuming that during the KSA the pseudo-random index j takes its values
uniformly at random from ZN , for every −1 ≤ i1 < i2 ≤ N − 1 then the probability
that the following equation holds

C[i2]− C[i1] = K[i1 + 1, i2] (1)

is at least pi1,i2 where

p−1,i2 = (1− i2
N

) · (1 − 1
N

)
i2(i2+1)

2 +N +
1
N

(2)

for 0 ≤ i2 ≤ N − 1 [5] and

pi1,i2 = (1− i2
N

)2 ·(1− i2 − i1 + 2
N

)i1 ·(1− 2
N

)N−i2−1
i2−i1−1∏

r=0

(1− r + 2
N

)+
1
N

(3)

for 0 ≤ i1 < i2 ≤ N − 1 [2].

In [5] the probabilities in Eq. (2) are used to retrieve the secret key of RC4. The
algorithm uses equations of (1) for i1 = −1 (which in this case is simplified as C[i2] =
K[0, i2]) in the following way. For each combination of m independent equations out
of the first n equations (i.e. 1 ≤ i2 ≤ n), the algorithm exhaustively guesses the value
of l−m key bytes, and solves the m equations to recover the remaining key bytes. The
success of the the algorithm depends on the existence of m correct and linearly indepen-
dent equations among the first n equations. The success probabilities and the running
time of the the algorithm for different key sizes and some choices for the parameters m
and n are presented in Table 1 (taken from [2], see also footnote 1 therein).

In [2] the probabilities in Eq. (3) along with Eq. (1) are used in a more sophisticated
way which lead to a better key recovery algorithm. The results can be seen in Table 2.
Very recently, Akgün, Kavak and Demirci [1] have developed new biases for RC4,
combined them with previous results and provided a new key recovery algorithm from
the internal state. It performs better than existing ones including ours. In particular, in
a theorem similar to Theorem 1, they provide a lower bound for the probability that
C′[i2]−C′[i1] = K[i1 +1, i2] for 0 ≤ i1 < i2 ≤ N−1 where C′[i] = S−1

N [i]− i(i+1)
2

for 0 ≤ i ≤ N − 1. In this paper we have only used the biases suggested by Theorem 1
since our work had been finalized before having been aware of [1]. Yet [1] does not

Table 1. Success probability and running time of the algorithm from [5] according to [2]

l n m Psucc Time
5 16 5 0.250 218

5 24 5 0.385 221

8 16 6 0.273 234

8 20 7 0.158 229

8 40 8 0.092 233

10 16 7 0.166 243

10 24 8 0.162 240

l n m Psucc Time
10 48 9 0.107 243

12 24 8 0.241 258

12 24 9 0.116 250

16 24 9 0.185 260

16 32 10 0.160 263

16 32 11 0.086 264

16 40 12 0.050 264

182 S. Khazaei and W. Meier

Table 2. Success probability and running time (in seconds) of the algorithm from [2] compared
to [5]

l Psucc Time [2] Time [5]
5 0.8640 0.02 366
8 0.4058 0.60 2900
10 0.0786 1.46 183
10 0.1290 3.93 2932
12 0.0124 3.04 100
12 0.0212 7.43 1000
16 0.0005 278 500

fully exploit the distribution of the noises, leaving a room to unify the biases from [1]
with those from Theorem 1 in a future work.

4 A Hypotheses-Testing Approach to the Problem

Each of the equations (1) gives us a noisy value of K[i1 + 1, i2] which is a linear
combination of the key values k[i]. Let assume that ei1,i2 ∈ ZN ,−1 ≤ i1 < i2 ≤ N−1,
denotes the noise of each equation, i.e.

K[i1 + 1, i2] = C[i2]− C[i1] + ei1,i2 . (4)

The random variables corresponding to these noises, denoted by Ei1,i2 , are not indepen-
dent (see proofs of Theorem 1 in [5,2]). Moreover Theorem 1 does not completely char-
acterize their probability distribution, since it only suggests pi1,i2 = Pr{Ei1,i2 = 0}
(we ignore the inequality). However, it is reasonable to assume that Ei1,i2 takes other

values with equal probabilities, i.e. Pr{Ei1,i2 = e} = 1−pi1,i2
N−1 for e ∈ Z�

N .
With this new view on the problem we try to recover the key in a correlation based

attack by taking a hypotheses-testing approach. This can be seen as a generalization of
the original correlation attack on binary LFSR’s by Siegenthaler [7]. First, we assume
an attacker with an unlimited amount of computational power, capable of making an
exhaustive search over all N l possible keys. Like [7], we make the assumption that
for a wrong guess k̄ (or equivalently the corresponding K̄) of the key, the values of
C[i2]−C[i1] and K̄[i1 + 1, i2] are uncorrelated. Under this assumption, we are facing
the following binary hypothesis testing problem. Given N(N+1)/2 samples of ei1,i2 =
K̄[i1 + 1, i2] − (C[i2] − C[i1]), −1 ≤ i1 < i2 ≤ N − 1, as a realization of the
random variables Ei1,i2 , decide if the guess k̄ is correct. Our ability in distinguishing
between a correct key (k̄ = k) from a wrong key (k̄ �= k) depends on the following two
distributions:

H0 : k̄ = k, Pr{Ei1,i2 = e|H0} =
{

pi1,i2 e = 0
1−pi1,i2

N−1 e ∈ Z�
N

(5)

H1 : k̄ �= k, Pr{Ei1,i2 = e|H1} =
1
N

, ∀e ∈ ZN . (6)

The quality of a decision rule (distinguisher) is related to two kinds of error probabili-
ties: false alarm probability pfa = Pr{H0|H1} and non-detection probability

On Reconstruction of RC4 Keys from Internal States 183

pnd = Pr{H1|H0}. Ideally, we would like to minimize both error probabilities but
normally there is a trade-off. The optimum decision rule is given by Neyman-Pearson
lemma [3]. It can be shown that for the hypothesis testing problem given by Eq. (5) and
(6), the optimum decision rule chooses H0 if M(SN , k̄) > T and selects H1 otherwise,
where

M(SN , k̄) =
∑

−1≤i1<i2≤N−1

log
(N − 1)pi1,i2

1− pi1,i2

· δ(ei1,i2) (7)

and δ : ZN → {0, 1} being the Dirac delta function (i.e. δ(e) = 1 iff e = 0). Remember
that ei1,i2 = K̄[i1 + 1, i2]− (C[i2]−C[i1]) only depends on SN and k̄. The parameter
T determines the false alarm and non-detection probabilities. More precisely we have,

pfa = Pr{M(SN , k̄) > T |k̄ �= k} (8)

and
pnd = Pr{M(SN , k̄) ≤ T |k̄ = k} . (9)

4.1 Complexity Analysis

Since there are N(N + 1)/2 terms in the sum (7), the complexity of exhaustive search
algorithm is 1

2N(N + 1)N l. As it was noticed in [2] the sum of all the key elements,
i.e. s = k[0, l − 1] is quite useful for reducing the complexity. In this section we will
show how we can reduce complexity to 1

2 l(l + 1)N l, using Nl(l + 1)/2 memory. The
idea is based on the following relations

K[i1 + 1, i2] = (q2 − q1) · s +

⎧⎪⎪⎨⎪⎪⎩
∑r2

t=r1
k[t] if r1 ≤ r2 & (r1, r2) �= (0, l − 1)

0 if r1 = r2 + 1
−
∑r1−1

t=r2+1 k[t] if r2 + 1 ≤ r1 − 1
s if (r1, r2) = (0, l− 1)

(10)
for −1 ≤ i1 < i2 ≤ N − 1 where r1 = (i1 + 1 mod l), q1 =
 i1+1

l �, r2 =
(i2 mod l) and q2 =
 i2

l �. Eq. (10) suggests that K[i1 + 1, i2] can be written as
u(s, i1, i2)+αk[r1, r2] where α ∈ {−1, 0, 1} and u being a function of s = k[0, l−1],
i1 and i2. It then follows that Eq. (7) can be written as follows:

M(SN , k̄) = v0,l−1(s̄, S) +
∑

0 ≤ r1 ≤ r2 ≤ l − 1
(r1, r2) �= (0, l − 1)

vr1,r2(k̄[r1, r2], s̄, S), (11)

with vi1,i2 , 0 ≤ r1 ≤ r2 ≤ l − 1 being some known functions and s̄ = k̄[0, l − 1].
Once s̄ is known, one can precompute and store v0,l−1 and all other vi1,i2 ’s for all
N possible values of k̄[i1 + 1, i2]. This simply suggests an implementation needing a
feasible amount of N (l(l + 1)/2− 1) + 1 memory and N ll(l + 1)/2 table look-ups
(we ignore the additive time N2(N + 1)/2 for evaluating vi1,i2 ’s). Note that l(l + 1)/2
table look-ups are much faster than direct evaluation of Eq. (7) since l N .

184 S. Khazaei and W. Meier

4.2 Simulation Results

Our simulation results show that the distributions of M(SN , k̄), given by Eq. (7) or
(11), under H0 and H1 are separated enough to provide a key recovery attack with high
success probability. Note that this is a key recovery attack which ONLY takes advantage
of the probabilities under our assumptions which are not totally correct (independence
of noises and uniform distribution for noise under H1). Moreover, our simulations show
that if we consider the hypotheses H ′

1 : k̄ �= k & s̄ = s, the distributions of M(SN , k̄)
under H0 and H ′

1 get a bit closer but still separated enough, see Fig. 1.

0.01

0.02

0.03

0.04

200 400 600 800

0.01

0.02

0.03

0.04

200 400 600 800

0.01

0.02

0.03

0.04

200 400 600 800

0.01

0.02

0.03

0.04

200 400 600 800

Fig. 1. Empirical distribution of M(SN , k̄) under H0, H1 and H ′
1 (red, blue and green resp.) for

l = 5, 8, 12 and 16 (up right, up left, down left and down right resp.)

We introduced H ′
1 to slightly compensate the ideal assumption that the noise under

H1 is uniformly distributed. This also helps to estimate a more exact bound for the suc-
cess probability of a distinguisher which suggests a small set of candidates for the key
(i.e. the distinguisher having pfa ≈ N−l). In practice it is not possible to do the simu-
lations for this value of pfa due to limited number of samples and therefore a practical
value should be chosen. Table 3 shows the simulated values for pnd corresponding to
pfa ≈ 2−10, and hence an upper bound estimation for the success probability psuc.

We expect that the actual success probabilities be very close to our estimations, espe-
cially for larger values of l. The key recovery algorithm of [2] has a much lower success

Table 3. An upper bound estimation for the success probability

l 5 6 7 8 9 10 12 16
pnd (for pfa ≈ 2−10) 0.215 0.125 0.055 0.020 0.018 0.010 0.005 0.000

psuc 0.785 0.875 0.945 0.980 0.982 0.990 0.995 1.00

On Reconstruction of RC4 Keys from Internal States 185

probability though it slightly takes into consideration the dependencies between noises.
Also notice that for larger values of l, the success probability increases which again
shows that the algorithm of [2] is far from being optimal.

Remark 1. We emphasize that the values of psuc = 1 − pnd (for pfa ≈ N−l), give the
success probability for an algorithm which makes exhaustive search over the key, only
uses the measure M(SN , k̄) to identify a small subset of candidates for the key, and
more importantly does not use the KSA. To achieve a higher success probability one
can allow a higher pfa resulting in a bigger set of candidates for the key which can later
be filtered to find the correct one by applying KSA.

We are interested in algorithms for reconstructing the key which avoid computation of
the measure M(SN , k̄) for all N l keys. In the next section we propose an algorithm
which starts with an estimate on LSB’s of the key bytes and then continues to bits of
higher significance.

5 A Bit-by-Bit Approach for Key Recovery

The idea is to take into account the probability distribution of Pr{Ei1,i2 mod 2r}
instead of Pr{Ei1,i2} and considering these two hypotheses: Hr

0 : k̄ = k mod 2r and
Hr

1 : k̄ �= k mod 2r. Then one can show that Eq. (5) and (6) become as follows

Hr
0 : Pr{Ei1,i2 = e mod 2r|H0} =

{
pr

i1,i2
e = 0

1−pr
i1,i2

2r−1 e ∈ Z�
2r

(12)

Hr
1 : Pr{Ei1,i2 = e mod 2r|H1} =

1
2r

, ∀e ∈ Z2r . (13)

where

pr
i1,i2 = pi1,i2 +

N − 2r

2r(N − 1)
(1− pi1,i2) (14)

assuming N is a power of 2. Similarly, the measure which should be computed is as
below

M r(SN , k̄) =
∑

−1≤i1<i2≤N−1

log
(2r − 1)pr

i1,i2

1− pr
i1,i2

· δ(ei1,i2 mod 2r) (15)

having related pr
fa and pr

nd similar to those in Eq. (8) and (9). Note that M r(S, k̄) only
depends on the first r LSB’s of k̄.

Fig. 2 shows the empirical distribution of M r(SN , k̄) (for r = 1, 2, . . . , 8) under
three hypotheses Hr

0 , Hr
1 and H ′r

1 for l = 16 (H ′r
1 is defined similar to Sect. 4.2).

It is clear that the bigger r is, the more separable the distributions become. Hence a
tree-based search can reduce the complexity with a huge factor. The idea is to search
over all 2l possible values of the r-th LSB of the key elements, assuming that the first
r − 1 LSB’s of the key are known, and choose only Nr out of them with the highest
correlation measure M r(S, k̄), given by Eq. (15). The complexity of this tree-based
search algorithm is C = 2l(1 +

∑
R−1
i=0

∏R−1
j=0 Nj) where R = %lg2 N&. The KSA must

186 S. Khazaei and W. Meier

0.02

0.04

0.06

0.08

0.10

0.12

200 400 600 800

r = 1

0.02

0.04

0.06

0.08

0.10

0.12

200 400 600 800

r = 2

0.02

0.04

0.06

200 400 600 800

r = 3

0.02

0.04

0.06

200 400 600 800

r = 4

0.02

0.04

200 400 600 800

r = 5
0.02

0.04

200 400 600 800

r = 6

0.02

0.04

200 400 600 800

r = 7
0.02

0.04

200 400 600 800

r = 8

Fig. 2. Empirical distribution of Mr(SN , k̄) (for r = 1, 2, . . . , 8) under Hr
0 , Hr

1 and H ′r
1 (red,

blue and green resp.) for l = 16

20

30

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8 1.0 psuc

log2(C)

l = 5

l = 6
l = 7

l = 8

l = 9
l = 10

l = 11

Fig. 3. Empirical complexity for l = 5, . . . , 11 versus success probability

On Reconstruction of RC4 Keys from Internal States 187

be applied to the
∏R−1

i=0 Nr key candidates which have reached the final leaves of the
tree in order to identify the (possibly) correct one. The complexity of the second step is
negligible compared to the first step. The success probability of the attack relies on the
parameters Nr’s. Fig. 3 shows the complexity of the attack versus success probability
for optimized parameters of the attack, for different values of l. Refer to Appendix A to
see how these curves have been achieved.

6 Conclusion

A recent statistical weakness in the key initialization of RC4 was used to efficiently
recover the key from the internal state. We started by fully exploiting the whole distri-
bution of noises expressing these newly found biases in RC4 in a hypotheses testing
model. Having carefully analyzed the noise distributions, we proposed a tree-based bit-
by-bit approach to recover the key bits. It turned out that the complexity of our algorithm
can be empirically computed versus its success probability. Further work is still open
thank to the more recently developed biases from [1] which we did not exploit.

References

1. Akgün, M., Kavak, P., Demirci, H.: New Results on the Key Scheduling Algorithm of RC4.
Indocrypt (to appear, 2008)

2. Biham, E., Carmeli, Y.: Efficient reconstruction of RC4 keys from internal states. In: Nyberg,
K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg (2008)

3. Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley series in Telecommunication.
Wiley, Chichester (1991)

4. Maximov, A., Khovratovich, D.: New state recovery attack on RC4. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008),
http://eprint.iacr.org/2008/017

5. Paul, G., Maitra, S.: Permutation after RC4 key scheduling reveals the secret key. In: Adams,
C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 360–377. Springer, Heidel-
berg (2007), http://eprint.iacr.org/2007/208.pdf

6. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher. In: Two posts in sci.crypt. (1995),
http://marcel.wanda.ch/Archive/WeakKeys

7. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Transactions
on Computers C-34, 81–85 (1985)

8. Vaudenay, S., Vuagnoux, M.: Passive–only key recovery attacks on RC4. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344–359. Springer, Heidelberg (2007)

A Deriving Optimized Parameters for Tree-Based Bit-by-Bit
Search Algorithm

In order to derive the complexity diagram versus success probability, Fig. 3, for the
optimized parameters Nr’s for the tree-based bit-by-bit search algorithm in Sect. 5 we

http://eprint.iacr.org/2008/017
http://eprint.iacr.org/2007/208.pdf
http://marcel.wanda.ch/Archive/WeakKeys

188 S. Khazaei and W. Meier

proceed as follows. For every given key size l, we produce N random keys ki =
(ki[0], . . . , ki[l − 1]), 1 ≤ i ≤ N . Then for each key ki, we compute a vector
N i = [N i

0, . . . , N
i
7] where N i

r, 0 ≤ r ≤ 7, satisfies 1 ≤ N i
r ≤ 2l and denotes the

number of choices of the r-th LSB of k̄ (out of 2l possible choices) having a correla-
tion measure M r(SN , k̄) greater than M r(SN , ki) provided that k̄[j] = ki[j] mod 2r,
0 ≤ j ≤ l− 1. As it was mentioned in Sect. 5, for given parameters Nr’s for the bit-by-
bit recovery algorithms, the complexity of the attack is C = 2l(1 +

∑
R−1
i=0

∏R−1
j=0 Nj)

where R = %lg2 N&. The success probability of the attack can then be estimated as the
percentage of the samples for which N i

r ≤ Nr, ∀ 0 ≤ r ≤ 7. However, the parame-
ters Nr’s may not be optimal and a better choice for them may exist having less time
complexity while providing the same success probability. In our simulation we chose
N = 1000 and we tried to find the optimal parameters using a simulated-annealing-like
procedure.

B Improved Recovery of Sum of the Key Elements

In [2] a method has been proposed to recover s, the sum of the key elements. Our sim-
ulations show that using the optimal measure v0,l−1(s̄, S) slightly improves the results.
Table 4 gives the probabilities that the measure v0,l−1(s̄, S) suggest that s has the i-th
highest measure (i = 1, 2, 3, 4) along with results from [2].

Table 4. Probabilities that s has any of the first four highest measure

l Measure Highest Second highest Third highest Fourth highest

5 v0,l−1 0.888 0.041 0.012 0.016
[2] 0.8022 0.0618 0.0324 0.0195

8 v0,l−1 0.641 0.064 0.042 0.023
[2] 0.5428 0.1373 0.0572 0.0325

10 v0,l−1 0.539 0.091 0.044 0.025
[2] 0.4179 0.1604 0.0550 0.0332

12 v0,l−1 0.441 0.070 0.051 0.041
[2] 0.3335 0.1618 0.0486 0.0287

16 v0,l−1 0.279 0.070 0.039 0.026
[2] 0.2309 0.1224 0.0371 0.0240

C Potential Improvements

The tree-based bit-by-bit search algorithm still has some potential for improvements.
For example one can imagine a path-ranking on the tree according to their correlation
measures and start proceeding on tree from the ones with highest correlation measure
at each step. Another idea could be just to ignore some branches in middle if their
correlation measure is less than some threshold value. Although these techniques can
definitely improve the average time complexity for a given success probability, they are
harder to analyze. Another way to improve the bit-by-bit search algorithm is to first

On Reconstruction of RC4 Keys from Internal States 189

recover the sum of the key elements, and then to use the same method. This way the
attack complexity reduces by a factor of about 28.

One can also consider the problem as an optimization problem and apply the known
methods like genetic algorithm, etc. These methods can easily converge to a key k̂
that maximizes M(SN , k). Our simulations show that the achieved value M(SN , k̂) is
almost always much greater than the correct one M(SN , k). The reason is that there
is very small fraction of the keys which have a measure greater than correct key. The
fraction is so small that they do not show up in the simulation which provides Fig. 1 and
as a result we have separated curves. However, once we use optimization algorithms,
it always end up with one of these false keys with highest amount of measure M .
Although it is very unlikely that the resultant key k̂ be the same as correct key k, but
they are quite correlated. For example, usually at least one of the elements of k̂ and k
are the same. It is an open question if we can somehow try to end up with the correct
key.

Author Index

Belovs, Aleksandrs 50

Di Crescenzo, Giovanni 1

Grassl, Markus 89
Gropp, Harald 27

Huber, Michael 18

Jozsa, Richard 43

Khazaei, Shahram 179
Kobara, Kazukuni 142
Kohnert, Axel 31
Krovi, Hari 70
Kurz, Sascha 31

Lazich, Dejan E. 157
Lundqvist, Samuel 105

Meier, Willi 179
Mora, Teo 126
Morozov, Kirill 142

Orsini, Emmanuela 126
Overbeck, Raphael 142

Pernas, J. 128
Pujol, J. 128

Rötteler, Martin 70

Smotrovs, Juris 50

Villanueva, M. 128

Wuensche, Micaela 157

	Title Page
	Preface
	Organization
	Table of Contents
	Cryptography I
	On the Security of Beth’s Identification Schemes against Active and Concurrent Adversaries
	Introduction
	Definitions
	Preliminaries
	El-Gamal Signature Scheme
	The Identification Scheme Beth-SI-0

	The Identification Scheme Beth-SI-1
	The Identification Scheme Beth-IBI-1
	References

	Designs
	Steiner t-Designs for Large t
	Introduction
	Combinatorial Designs
	Basic Properties and Existence Results
	Approach via Symmetry
	Non-existence of Block-Transitive Steiner 6-Designs
	References

	New Spatial Configurations
	Introduction and Notation
	New Constructions
	k ≤ 7
	k = 8
	k = 9

	The Existence Table of 2-Configurations
	References

	Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance
	Introduction
	Subspace Codes
	q−Analogues of Designs

	Construction of Constant Dimension Codes
	Constant Dimension Codes with Prescribed Automorphisms
	Example

	Using Singer Cycles
	Results
	References

	Quantum Computing
	Invited Talk: Embedding Classical into Quantum Computation
	Introduction
	Classically Simulatable Quantum Computations
	Extensions of Simulatable Circuits
	Concluding Remarks
	References

	A Criterion for Attaining the Welch Bounds with Applications for Mutually Unbiased Bases
	Mutually Unbiased Bases
	Welch Bounds and Crosscorrelation
	Link between MUBs and the Welch Bounds
	Criterion for Attaining the Welch Bounds
	Application of the Criterion to MUBs
	Homogeneous Systems of MUBs
	Fourier Matrices
	Fourier Matrices in Homogeneous Systems
	Known Constructions
	Related Combinatorial Structures
	Conclusion
	References

	An Efficient Quantum Algorithm for the Hidden Subgroup Problem over Weyl-Heisenberg Groups
	Introduction
	The Weyl-Heisenberg Groups
	Fourier Sampling Approach to HSP
	The Irreducible Representations
	The Quantum Algorithm
	Conclusions
	References
	A QFT for the Weyl-Heisenberg Groups

	Algorithms
	Computing Equiangular Lines in Complex Space
	Introduction
	The General Case
	Weyl-Heisenberg Symmetry
	Zauner’s Conjecture
	Modular Techniques for Solving Polynomial Equations
	Conclusions
	References
	Appendix

	Complexity of Comparing Monomials and Two Improvements of the Buchberger-M\"{o}ller Algorithm
	Introduction
	Monomial Manipulations
	Complexity Model
	Monomial Orders
	Comparing Vectors of Integers
	Comparing Monomials with Respect to a Standard Order
	Comparing Monomials with Respect to a Matrix Order
	Merging Sorted Lists of Monomials

	TheBuchberger-M\'{o}ller -Algorithm Revised
	Two Formulations of the BM-Algorithm
	Optimizing the BM-Algorithm
	Applications to the FGLM-Algorithm and for Ideals Defined by Functionals

	Discussion and Future Work
	References

	Coding Theory
	Invited Talk: Decoding Cyclic Codes: The Cooper Philosophy
	References

	Kernel Dimension for Some Families of Quaternary Reed-Muller Codes
	Introduction
	Preliminaries
	Quaternary Linear Codes
	Quaternary Linear Reed-Muller Codes

	Kernel Dimensions for the \RM_s Family with $s=0$
	Kernel Dimensions for the \RM_s Families
	Conclusions
	References

	Cryptography II
	Coding-Based Oblivious Transfer
	Introduction
	Preliminaries
	Security Definitions
	Assumptions
	Tools

	Reducing the Gap in Rabin OT
	Rabin Oblivious Transfer
	Security Analysis
	Omitting Trusted Third Party

	1-out-of-2 String Oblivious Transfer
	References
	Appendix A: Details on Security of Rabin OT
	A.1 Examples of Security Parameters
	A.2 Reaction Attack
	A.3 Proof Details for Receiver’s Security

	Protection of Sensitive Security Parameters in Integrated Circuits
	Introduction
	Properties of the IC-Eigenkey
	Physical Uncloneable Functions
	Different Basic Systems for PUFs
	Silicon PUFs Based on Propagation Delays of Gates

	Delay Line Configuration of the IC-Eigenkey Generator
	Configuration Control of the IC-Eigenkey Generator
	Simulation Results and Tests
	Simulation Results
	Test Results

	Conclusion
	References

	On Reconstruction of RC4 Keys from Internal States
	Introduction
	Description of $\sf{RC4}$ and Notations
	Previous Results
	A Hypotheses-Testing Approach to the Problem
	Complexity Analysis
	Simulation Results

	A Bit-by-Bit Approach for Key Recovery
	Conclusion
	References
	A Deriving Optimized Parameters for Tree-Based Bit-by-Bit Search Algorithm
	B Improved Recovery of Sum of the Key Elements
	C Potential Improvements

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

